Câu hỏi:
18/06/2025 19
Cho hai đa thức \(A = {x^2} - 4xy - 4\) và \(B = 2{x^2} - 3xy + {y^2} - 4.\)
Đa thức \(M\) và \(P\) thỏa mãn \(B = A + M\,;\, & P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right).\)
a) Hạng tử tự do của đa thức \(A\) là \( - 4\).
b) Với \(x = 1\,;\,\,y = 0\) thì giá trị của biểu thức \(B\) bằng \( - 2.\)
c) \(M = {x^2} + 7xy + {y^2}.\)
d) Giá trị của biểu thức \(P\) không phụ thuộc vào biến \(y\).
Cho hai đa thức \(A = {x^2} - 4xy - 4\) và \(B = 2{x^2} - 3xy + {y^2} - 4.\)
Đa thức \(M\) và \(P\) thỏa mãn \(B = A + M\,;\, & P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right).\)
a) Hạng tử tự do của đa thức \(A\) là \( - 4\).
b) Với \(x = 1\,;\,\,y = 0\) thì giá trị của biểu thức \(B\) bằng \( - 2.\)
c) \(M = {x^2} + 7xy + {y^2}.\)
d) Giá trị của biểu thức \(P\) không phụ thuộc vào biến \(y\).
Quảng cáo
Trả lời:
Đáp án: a) Đúng. b) Sai. c) Sai. d) Đúng.
⦁ Đa thức \(A\) có hạng tử tự do là \( - 4\). Do đó ý a) đúng.
⦁ Thay \(x = 1\,;\,\,y = 0\) vào biểu thức \(B\), ta có:
\(B = 2 \cdot {1^2} - 3 \cdot 1 \cdot 0 + {0^2} - 4 = 2 - 4 = - 2.\)
Vậy với \(x = 1\,;\,\,y = 0\) thì \(B = - 2\). Do đó ý b) sai.
⦁ Ta có: \(B = A + M\)
Suy ra \(M = B - A\)\( = 2{x^2} - 3xy + {y^2} - 4 - \left( {{x^2} - 4xy - 4} \right)\)
\( = 2{x^2} - 3xy + {y^2} - 4 - {x^2} + 4xy + 4\)
\( = {x^2} + xy + {y^2}.\)
Như vậy \(M = {x^2} + xy + {y^2}.\) Do đó ý c) sai.
⦁ Ta có \[P = \left( {x - 3} \right)M - y - \left( {x + y} \right)\left( {xy - 3y} \right)\]
\( = \left( {x - 3} \right)\left( {{x^2} + xy + {y^2}} \right) - \left( {{x^2}y - 3xy + x{y^2} - 3{y^2}} \right)\)
\[ = x\left( {{x^2} + xy + {y^2}} \right) - 3\left( {{x^2} + xy + {y^2}} \right) - {x^2}y + 3xy - x{y^2} + 3{y^2}\]
\[ = {x^3} + {x^2}y + x{y^2} - 3{x^2} - 3xy - 3{y^2} - {x^2}y + 3xy - x{y^2} + 3{y^2}\]
\[ = {x^3} - 3{x^2}\].
Như vậy, giá trị của biểu thức \(P\) không phụ thuộc vào giá trị của biến \(y.\) Do đó ý d) đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 8.
Ta có \[{x^3} + 6{x^2} + 12x + m = {x^3} + 3 \cdot {x^2} \cdot 2 + 3 \cdot x \cdot {2^2} + m\].
Để biểu thức trên là lập phương của một tổng thì \(m = {2^3} = 8\).
Khi đó, \[{x^3} + 6{x^2} + 12x + 8 = {x^3} + 3 \cdot {x^2} \cdot 2 + 3 \cdot x \cdot {2^2} + {2^3} = {\left( {x + 2} \right)^3}\].
Lời giải
Đáp án đúng là: C
Tứ giác \(IJLK\) không phải là tứ giác lồi vì có hai đỉnh \(I\) và \(J\) cùng thuộc cạnh \(IJ\) nằm về hai phía của đường thẳng \(LK.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.