Câu hỏi:

19/06/2025 37 Lưu

Hình chóp tứ giác đều có cạnh đáy là \(1\) cm. Khi đó chu vi đáy của hình chóp này là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Đáy của hình chóp tứ giác đều là hình vuông.

Do đó, chu vi đáy của hình chóp tứ giác đều là \(4 \cdot 1 = 4\,\,\left( {{\rm{cm}}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp số: 19.

Ta có \({x^2} + {y^2} = {x^2} + 2xy + {y^2} - 2xy\)

\( = {\left( {x + y} \right)^2} - 2xy\)

\( = {5^2} - 2 \cdot 3 = 19\).

Vậy với \(x - y = 5\) và \(xy = 3\) thì giá trị của biểu thức \({x^2} + {y^2}\) bằng 19.

Lời giải

Đáp số: 200.

Tứ giác \(ABCD\) có \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \).

Suy ra \[\widehat A + \widehat B = 360^\circ - \widehat C - \widehat D = 360^\circ - 50^\circ - 60^\circ = 250^\circ .\]

Ta có \(\widehat A:\widehat B = 3:2\) nên \[\frac{{\widehat A}}{{\widehat B}} = \frac{3}{2}\] hay \[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2}\].

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\[\frac{{\widehat A}}{3} = \frac{{\widehat B}}{2} = \frac{{\widehat A + \widehat B}}{{3 + 2}} = \frac{{250^\circ }}{5} = 50^\circ .\]

Suy ra \[\widehat A = 3 \cdot 50^\circ = 150^\circ \,;\,\,\widehat B = 2 \cdot 50^\circ = 100^\circ .\]

Do đó \(2\widehat A - \widehat B = 2 \cdot 150^\circ - 100^\circ = 200^\circ .\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP