Cho tam giác \[ABC\] có độ dài ba cạnh \[AB = 6{\rm{ cm}},{\rm{ }}BC = 8{\rm{ cm}},{\rm{ }}AC = 10{\rm{ cm}}.\] Khẳng định nào sau đây là đúng?
Cho tam giác \[ABC\] có độ dài ba cạnh \[AB = 6{\rm{ cm}},{\rm{ }}BC = 8{\rm{ cm}},{\rm{ }}AC = 10{\rm{ cm}}.\] Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:

Đáp án đúng là: B
Xét tam giác \[ABC\] ta có:
\[A{B^2} + B{C^2} = {6^2} + {8^2} = 100\]; \[A{C^2} = 100\].
Ta thấy \[A{B^2} + B{C^2} = A{C^2} = 100\].
Do đó tam giác \[ABC\] vuông tại \[B\] (định lí Pythagore đảo).![Cho tam giác \[ABC\] có độ dài ba cạnh \[AB = 6{\rm{ cm}},{\rm{ }}BC = 8{\rm{ cm}},{\rm{ }}AC = 10{\rm{ cm}}.\] Khẳng định nào sau đây là đúng? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid4-1750302459.png)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 19.
Ta có \({x^2} + {y^2} = {x^2} + 2xy + {y^2} - 2xy\)
\( = {\left( {x + y} \right)^2} - 2xy\)
\( = {5^2} - 2 \cdot 3 = 19\).
Vậy với \(x - y = 5\) và \(xy = 3\) thì giá trị của biểu thức \({x^2} + {y^2}\) bằng 19.
Lời giải
Đáp án đúng là: A
• Đẳng thức \({x^2} - x = - x + {x^2}\) là hằng đẳng thức.
• Đẳng thức \(x\left( {x - 1} \right) = x - {x^2}\) không là hằng đẳng thức vì khi ta thay \(x = 2\) thì hai đẳng thức không bằng nhau.
• Đẳng thức \({\left( {a - b} \right)^2} = - {\left( {b - a} \right)^2}\) không là hằng đẳng thức vì khi ta thay \(a = 0,\,\,b = 1\) thì hai đẳng thức không bằng nhau.
• Đẳng thức \(a - 2 = 2 - a\) không là hằng đẳng thức vì khi ta thay \(a = 0\) thì hai đẳng thức không bằng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.