Câu hỏi:

19/06/2025 30 Lưu

Cho tam giác \[ABC\] có độ dài ba cạnh \[AB = 6{\rm{ cm}},{\rm{ }}BC = 8{\rm{ cm}},{\rm{ }}AC = 10{\rm{ cm}}.\] Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Xét tam giác \[ABC\] ta có:

\[A{B^2} + B{C^2} = {6^2} + {8^2} = 100\]; \[A{C^2} = 100\].

Ta thấy \[A{B^2} + B{C^2} = A{C^2} = 100\].

Do đó tam giác \[ABC\] vuông tại \[B\] (định lí Pythagore đảo).
Cho tam giác \[ABC\] có độ dài ba cạnh \[AB = 6{\rm{ cm}},{\rm{ }}BC = 8{\rm{ cm}},{\rm{ }}AC = 10{\rm{ cm}}.\] Khẳng định nào sau đây là đúng? (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Đẳng thức \({x^2} - x = - x + {x^2}\) là hằng đẳng thức.

Đẳng thức \(x\left( {x - 1} \right) = x - {x^2}\) không là hằng đẳng thức vì khi ta thay \(x = 2\) thì hai đẳng thức không bằng nhau.

Đẳng thức \({\left( {a - b} \right)^2} = - {\left( {b - a} \right)^2}\) không là hằng đẳng thức vì khi ta thay \(a = 0,\,\,b = 1\) thì hai đẳng thức không bằng nhau.

Đẳng thức \(a - 2 = 2 - a\) không là hằng đẳng thức vì khi ta thay \(a = 0\) thì hai đẳng thức không bằng nhau.

Lời giải

Đáp án:      a) Đúng.    b) Đúng.     c) Sai.        d) Sai.

Mỗi hộp quà có 5 mặt gồm 4 mặt bên và 1 mặt đáy. Do đó ý a) đúng.

Diện tích xung quanh của một hộp quà là: \({S_{xq}} = \frac{1}{2} \cdot \left( {4 \cdot 6} \right) \cdot 4 = 48{\rm{\;}}\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý b) đúng.

Diện tích các mặt của hộp quà là:  Do đó ý c) sai.

Để làm 4 hộp quà bạn Uyên cần dùng diện tích giấy là: \(4 \cdot 84 = 336{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý d) sai.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP