Cho hai biểu thức \(A\) và \(B\) thỏa mãn \(45{x^6}{y^3}:A = 5{x^3}{y^2}\) và \(\left( {B + 7{x^4}{y^2}} \right):A = 3x{y^2} + 2xy.\)
a) Biểu thức là đơn thức bậc 3.
b) Với \(x = - 1\,;\,\,y = 2\) thì giá trị của biểu thức \(A\) bằng \( - 18.\)
c) Đa thức \(B\) có hai hạng tử.
d) Tích của hai biểu thức \(A\) và \(B\) là \(36{x^7}{y^5} + 20{x^7}{y^3}.\)
Cho hai biểu thức \(A\) và \(B\) thỏa mãn \(45{x^6}{y^3}:A = 5{x^3}{y^2}\) và \(\left( {B + 7{x^4}{y^2}} \right):A = 3x{y^2} + 2xy.\)
a) Biểu thức là đơn thức bậc 3.
b) Với \(x = - 1\,;\,\,y = 2\) thì giá trị của biểu thức \(A\) bằng \( - 18.\)
c) Đa thức \(B\) có hai hạng tử.
d) Tích của hai biểu thức \(A\) và \(B\) là \(36{x^7}{y^5} + 20{x^7}{y^3}.\)
Quảng cáo
Trả lời:
Đáp án: a) Sai. b) Đúng. c) Đúng. d) Sai.
⦁ Ta có \(45{x^6}{y^3}:A = 5x{y^2}\).
Suy ra \(A = 45{x^6}{y^3}:5{x^3}{y^2} = 9{x^3}y\).
Như vậy, biểu thức \(A\) là đơn thức bậc 4. Do đó ý a) sai.
⦁ Thay \(x = - 1\,;\,\,y = 2\) vào biểu thức \(A\), ta có: \(A = 9 \cdot {\left( { - 1} \right)^3} \cdot 2 = - 9 \cdot 2 = - 18.\)
Vậy với \(x = - 1\,;\,\,y = 2\) thì \(A = - 18\). Do đó ý b) đúng.
⦁ Với \(A = 9{x^3}y\), ta có \(\left( {B + 7{x^4}{y^2}} \right):9{x^3}y = 3x{y^2} + 2xy\)
Suy ra \(B + 7{x^4}{y^2} = 9{x^3}y\left( {3x{y^2} + 2xy} \right) = 27{x^4}{y^4} + 18{x^4}{y^2}.\)
Do đó \(B = 27{x^4}{y^4} + 18{x^4}{y^2} - 7{x^4}{y^2} = 27{x^4}{y^4} + 11{x^4}{y^2}\).
Như vậy, đa thức \(B\) có hai hạng tử là \(27{x^4}{y^4}\) và \(11{x^4}{y^2}\). Do đó ý c) đúng.
⦁ Ta có \(A \cdot B = 9{x^3}y \cdot \left( {27{x^4}{y^4} + 11{x^4}{y^2}} \right)\)
\( = 9{x^3}y \cdot 27{x^4}{y^4} + 9{x^3}y \cdot 11{x^4}{y^2}\)
\( = 243{x^7}{y^5} + 99{x^7}{y^3}.\)
Như vậy, tích của hai biểu thức \(A\) và \(B\) là \(243{x^7}{y^5} + 99{x^7}{y^3}.\) Do đó ý d) sai.Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Điều kiện xác định của biểu thức \[E\] là \(x \ne 0;\,\,x + 2 \ne 0;\,\,x - 2 \ne 0\).
Khi đó \(x \ne 0;\,\,x \ne \pm \,2.\)
Vậy điều kiện xác định của biểu thức \[E\] là \(x \ne 0;\,\,x \ne \pm \,2.\)
b) Với \(x \ne 0;\,\,x \ne \pm \,2\), ta có
\(E = \left( {\frac{1}{{x + 2}} + \frac{1}{{x - 2}}} \right) \cdot \frac{{{x^2} + 4x + 4}}{{2x}}\)
\[ = \left[ {\frac{{x - 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} + \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}} \right] \cdot \frac{{{{\left( {x + 2} \right)}^2}}}{{2x}}\]
\[ = \frac{{x - 2 + x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} \cdot \frac{{{{\left( {x + 2} \right)}^2}}}{{2x}}\]\[ = \frac{{2x}}{{x - 2}} \cdot \frac{{x + 2}}{{2x}} = \frac{{x + 2}}{{x - 2}}\].
Lời giải
a) Độ dài cạnh đáy của hình chóp tứ giác đều \[S.ABCD\] là:
\(S = {a^2}\) suy ra \(400 = {a^2}\) nên \[a = 20\].
Diện tích xung quanh của hình chóp tứ giác đều \[S.ABCD\] là:
\[{S_{xq}} = \frac{1}{2}\,.\,C\,.\,d = \frac{1}{2}\,.\,\left( {4\,.\,20} \right)\,.\,25 = 1\,\,000\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\]
b) Diện tích toàn phần của hình chóp tứ giác đều \[S.ABCD\] là:
\({S_{tp}} = {S_{xq}} + S = 1\,\,000 + {20^2} = 1\,\,400\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\frac{{4x}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}\].
B. \[\frac{{4x - 2}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho một hình chóp tứ giác đều [S.ABCD] có diện tích đáy là (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/blobid3-1763434580.png)