Câu hỏi:

19/08/2025 308 Lưu

Cho hai biểu thức \(A\) và \(B\) thỏa mãn \(45{x^6}{y^3}:A = 5{x^3}{y^2}\) và \(\left( {B + 7{x^4}{y^2}} \right):A = 3x{y^2} + 2xy.\)

a) Biểu thức  là đơn thức bậc 3.

b) Với \(x = - 1\,;\,\,y = 2\) thì giá trị của biểu thức \(A\) bằng \( - 18.\)

c) Đa thức \(B\) có hai hạng tử.

d) Tích của hai biểu thức \(A\) và \(B\) là \(36{x^7}{y^5} + 20{x^7}{y^3}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:      a) Sai.        b) Đúng.     c) Đúng.     d) Sai.

Ta có \(45{x^6}{y^3}:A = 5x{y^2}\).

Suy ra \(A = 45{x^6}{y^3}:5{x^3}{y^2} = 9{x^3}y\).

Như vậy, biểu thức \(A\) là đơn thức bậc 4. Do đó ý a) sai.

Thay \(x = - 1\,;\,\,y = 2\) vào biểu thức \(A\), ta có: \(A = 9 \cdot {\left( { - 1} \right)^3} \cdot 2 = - 9 \cdot 2 = - 18.\)

Vậy với \(x = - 1\,;\,\,y = 2\) thì \(A = - 18\). Do đó ý b) đúng.

Với \(A = 9{x^3}y\), ta có \(\left( {B + 7{x^4}{y^2}} \right):9{x^3}y = 3x{y^2} + 2xy\)

Suy ra \(B + 7{x^4}{y^2} = 9{x^3}y\left( {3x{y^2} + 2xy} \right) = 27{x^4}{y^4} + 18{x^4}{y^2}.\)

Do đó \(B = 27{x^4}{y^4} + 18{x^4}{y^2} - 7{x^4}{y^2} = 27{x^4}{y^4} + 11{x^4}{y^2}\).

Như vậy, đa thức \(B\) có hai hạng tử là \(27{x^4}{y^4}\) và \(11{x^4}{y^2}\). Do đó ý c) đúng.

Ta có \(A \cdot B = 9{x^3}y \cdot \left( {27{x^4}{y^4} + 11{x^4}{y^2}} \right)\)

\( = 9{x^3}y \cdot 27{x^4}{y^4} + 9{x^3}y \cdot 11{x^4}{y^2}\)

\( = 243{x^7}{y^5} + 99{x^7}{y^3}.\)

Như vậy, tích của hai biểu thức \(A\) và \(B\) là \(243{x^7}{y^5} + 99{x^7}{y^3}.\) Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Điều kiện xác định của biểu thức \[E\] là \(x \ne 0;\,\,x + 2 \ne 0;\,\,x - 2 \ne 0\).

Khi đó \(x \ne 0;\,\,x \ne  \pm \,2.\)

Vậy điều kiện xác định của biểu thức \[E\] là \(x \ne 0;\,\,x \ne  \pm \,2.\)

b) Với \(x \ne 0;\,\,x \ne  \pm \,2\), ta có

\(E = \left( {\frac{1}{{x + 2}} + \frac{1}{{x - 2}}} \right) \cdot \frac{{{x^2} + 4x + 4}}{{2x}}\)

\[ = \left[ {\frac{{x - 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} + \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}}} \right] \cdot \frac{{{{\left( {x + 2} \right)}^2}}}{{2x}}\]

\[ = \frac{{x - 2 + x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} \cdot \frac{{{{\left( {x + 2} \right)}^2}}}{{2x}}\]\[ = \frac{{2x}}{{x - 2}} \cdot \frac{{x + 2}}{{2x}} = \frac{{x + 2}}{{x - 2}}\].

Lời giải

a) Độ dài cạnh đáy của hình chóp tứ giác đều \[S.ABCD\] là:

\(S = {a^2}\) suy ra \(400 = {a^2}\) nên \[a = 20\].

Diện tích xung quanh của hình chóp tứ giác đều \[S.ABCD\] là:

                   \[{S_{xq}} = \frac{1}{2}\,.\,C\,.\,d = \frac{1}{2}\,.\,\left( {4\,.\,20} \right)\,.\,25 = 1\,\,000\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\]

b) Diện tích toàn phần của hình chóp tứ giác đều \[S.ABCD\] là:

                  \({S_{tp}} = {S_{xq}} + S = 1\,\,000 + {20^2} = 1\,\,400\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\)

Câu 3

A. \[21\].                
B. \[16\].             
C. \[0\].             
D. \[ - 16\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[{\rm{25}}\sqrt {\rm{3}} \;{\rm{c}}{{\rm{m}}^{\rm{3}}}\]. 
B. \[\frac{{{\rm{25}}\sqrt {\rm{3}} }}{{\rm{3}}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\].                   
C. \[\frac{{{\rm{125}}\sqrt {\rm{3}} }}{{\rm{4}}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\].      
D. \[\frac{{{\rm{25}}\sqrt {\rm{3}} }}{{{\rm{14}}}}\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{4x}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}\].       

B. \[\frac{{4x - 2}}{{\left( {2x - 1} \right)\left( {2x + 1} \right)}}\].

C. \[\frac{{3x}}{{5\left( {{x^2} + 4} \right)}}\].   
D. \[\frac{x}{{5\left( {{x^2} + 4} \right)}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(3{x^2} + x\).     
B. \(3{x^3} + x\).     
C. \(2{x^3} + x\).      
D. \(2{x^3} + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP