Câu hỏi:

19/06/2025 8

1. Một viên bi lăn từ vị trí \(A\) đến vị trí \(D\) theo đường gấp khúc \(ABCD\) hết 21 giây, biết rằng \(AB = 10{\rm{\;cm}},\) \(BC = 12{\rm{\;cm}},\) \(CD = 6{\rm{\;cm}}\) (hình vẽ bên). Hỏi nếu viên bi đó lăn theo đoạn thẳng \(AD\) thì hết bao nhiêu giây? Giả sử vận tốc của viên bi không thay đổi.
 
Media VietJack

2. Đỉnh Fansipan (Lào Cai) cao \(3143{\rm{ m}}{\rm{,}}\) là đỉnh núi cao nhất Đông Dương. Trên đỉnh núi, người ta đặt một chóp làm bằng inox có dạng hình chóp tam giác đều dài \(60{\rm{ cm}}{\rm{,}}\)chiều cao \(90{\rm{ cm}}\). Đỉnh Fansipan được minh họa bằng bởi hình chóp tam giác đều \(S.ABC\). Đường cao của mặt đáy là \(CH\,;\,\,G\) là trọng tâm của mặt đáy (như hình vẽ).

Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1.

1. Một viên bi lăn từ vị trí \(A\) đến vị trí \(D\) theo đường gấp khúc \(ABCD\) hết 21 giây, biết rằng \(AB = 10{\rm{\;cm}},\) \(BC = 12{\rm{\;cm}},\) \(CD = 6{\rm{\;cm}}\) (hình vẽ bên). Hỏi nếu viên bi đó lăn theo đoạn thẳng \(AD\) thì hết bao nhiêu giây? Giả sử vận tốc của viên bi không thay đổi. (ảnh 1)

Từ \(D\) vẽ \(Dx \bot CD\) cắt tia \(AB\) tại \(E.\)

Xét tứ giác \(BCDE\)\(\widehat {BCD} = \widehat {CDE} = \widehat {CBE} = 90^\circ \) nên \(BCDE\) là hình chữ nhật.

Do đó \(DE = BC = 12{\rm{\;cm}},\,\,BE = CD = 6{\rm{\;cm}}.\)

\(AE = AB + BE = 10 + 6 = 16{\rm{\;}}\left( {{\rm{cm}}} \right).\)

Áp dụng định lí Pythagore cho \(\Delta ADE\) vuông tại \(E,\) ta được: \(A{D^2} = A{E^2} + D{E^2} = {16^2} + {12^2} = 400.\)

Suy ra \[AD = \sqrt {400} = 20{\rm{\;}}\left( {{\rm{cm}}} \right).\]

Thời gian viên bi lăn theo đoạn thẳng \(AD\)\(\frac{{20 \cdot 21}}{{28}} = 15\) (giây).

2. a) Mặt đáy của hình chóp \(S.ABC\) là một tam giác đều \(ABC\) có cạnh \(60{\rm{ cm}}{\rm{.}}\)

Tam giác đều \(ABC\) có \(CH\)là đường cao nên \(CH\) cũng là đường trung tuyến nên

\(HA = HB = \frac{{AB}}{2} = 30{\rm{ }}\left( {{\rm{cm}}} \right){\rm{.}}\)

Áp dụng định lý Pythagore vào \(\Delta BHC\) vuông tại \(H\), ta có:

\(B{C^2} = H{B^2} + H{C^2}\) suy ra \[H{C^2} = B{C^2} - H{B^2} = {60^2} - {30^2} = 2{\rm{ }}700\].

Do đó \(CH = \sqrt {2700} = 30\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Vậy \(HA = 30{\rm{ cm}}\,;\,\,CH = 30\sqrt 3 {\rm{ cm}}.\)

b) Gọi \(G\) là trọng tâm của mặt đáy nên \(GH = \frac{1}{3}HC = \frac{{30\sqrt 3 }}{3} = 10\sqrt 3 {\rm{ }}\left( {{\rm{cm}}} \right)\).

Hình chóp \(S.ABC\) có đường cao \(SG\) nên \(SG \bot HC.\)

Áp dụng định lý Pythagore vào \(\Delta SHG\) vuông tại \(G\), ta có:

\(S{H^2} = S{G^2} + H{G^2} = {90^2} + {30^2} = 9\,\,000\).

Suy ra \(SH = \sqrt {9\,\,000} = 30\sqrt {10} {\rm{ }}\left( {{\rm{cm}}} \right){\rm{.}}\)

Nửa chu vi đáy là: \(P = \frac{1}{2}\left( {60 + 60 + 60} \right) = 90{\rm{ }}\left( {{\rm{cm}}} \right)\).

Diện tích xung quanh của hình chóp là \(S = P \cdot d = 90 \cdot 30\sqrt {10} \approx 8\,\,538{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Vậy diện tích xung quanh của hình chóp là \(8\,\,538{\rm{ c}}{{\rm{m}}^{\rm{2}}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án:      a) Đúng.    b) Đúng.     c) Sai.        d) Sai.

Mỗi hộp quà có 5 mặt gồm 4 mặt bên và 1 mặt đáy. Do đó ý a) đúng.

Diện tích xung quanh của một hộp quà là: \({S_{xq}} = \frac{1}{2} \cdot \left( {4 \cdot 6} \right) \cdot 4 = 48{\rm{\;}}\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý b) đúng.

Diện tích các mặt của hộp quà là:  Do đó ý c) sai.

Để làm 4 hộp quà bạn Uyên cần dùng diện tích giấy là: \(4 \cdot 84 = 336{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Do đó ý d) sai.

Lời giải

Đáp số: 27.

Thể tích khúc gỗ hình lập phương là: \[{30^3} = 27\,\,000\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right).\]

Thể tích của phần gỗ còn lại hình chóp tứ giác đều là:

\(\frac{1}{3} \cdot {30^2} \cdot 30 = 9\,\,000\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Thể tích của khối gỗ bị cắt đi là:

\[27\,\,000 - 9\,\,000 = 18\,\,000\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right) = 18\,\,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right).\]

Vậy thể tích của phần gỗ bị cắt đi là \[18\,\,{\rm{d}}{{\rm{m}}^{\rm{3}}}.\]

Câu 4

Bậc của biểu thức \(A = 2{x^2}y \cdot 5x{y^3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Điều kiện của số tự nhiên \(n\) để phép chia \(\left( {4{x^{10}}y - x{y^7} + {x^5}{y^4}} \right):2{x^n}{y^n}\) là phép chia hết là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Đẳng thức nào sau đây là hằng đẳng thức?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Đa thức \(14{x^2}y - 21x{y^2} + 28{x^2}{y^2}\) được phân tích thành

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay