Câu hỏi:

19/06/2025 78 Lưu

Một hình chóp tứ giác đều có cạnh đáy là \(a\) và độ dài trung đoạn là \(b\) thì có diện tích xung quanh là

A. \({S_{xq}} = 2ab.\)    

B. \({S_{xq}} = ab.\)      
C. \({S_{xq}} = \frac{1}{2}ab.\)   
D. \({S_{xq}} = 4ab.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Diện tích xung quanh của hình chóp tứ giác đều đã cho là \({S_{xq}} = \frac{1}{2} \cdot \left( {4a} \right) \cdot b = 2ab\) (đvdt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Diện tích bề mặt cần sơn là:

              \[{S_{xq}} = \frac{1}{2}\,.\,C\,.\,d = \frac{1}{2}\,.\,\left( {3\,.\,20} \right).\,21 = 630\,\,\left( {c{m^2}} \right)\]

b) Thể tích của chậu trồng cây đó là:

\(V = \frac{1}{3}\,.\,S\,.\,h = \frac{1}{3} \cdot \left( {\frac{1}{2}.\,20\,.\,\,17} \right)\,.\,35 \approx 1\,\,983,33\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\)           

Lời giải

a) Với \(x \ne 0\,;\,\,x \ne  - 1\), ta có:

\(P = \frac{{{x^2}}}{{x + 1}} + \frac{{2(x - 1)}}{x} + \frac{{x + 2}}{{{x^2} + x}}\)

\( = \frac{{{x^3}}}{{x\left( {x + 1} \right)}} + \frac{{2(x - 1)\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}} + \frac{{x + 2}}{{x\left( {x + 1} \right)}}\)

\( = \frac{{{x^3} + 2\left( {{x^2} - 1} \right) + x + 2}}{{x\left( {x + 1} \right)}}\)\[ = \frac{{{x^3} + 2{x^2} - 2 + x + 2}}{{x\left( {x + 1} \right)}}\]

\[ = \frac{{{x^3} + 2{x^2} + x}}{{x\left( {x + 1} \right)}} = \frac{{x{{\left( {x + 1} \right)}^2}}}{{x\left( {x + 1} \right)}} = x + 1\].

b) Với \(x = 1\) (TMĐK), thay vào biểu thức \(P\), ta được:

\[P = x + 1 = 1 + 1 = 2\].

Vậy tại \(x = 1\) thì giá trị của biểu thức \(P\) bằng 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = 1\).           
B. \(x =  - 1\).          
C. \(x =  - 1;\,\,x = 1\).  
D. \(x = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP