Câu hỏi:
19/06/2025 29
Cho hai đa thức:
\(A = {x^2}y + 5xy - 1\) và \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\).
a) Đa thức \(A\) có bậc là 2.
b) Đa thức \(B\) không chia hết cho 6.
c) Với \(x = \frac{1}{2};\) \(y = 4\) thì \(B = - 6\).
d) Tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 6.
Cho hai đa thức:
\(A = {x^2}y + 5xy - 1\) và \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\).
a) Đa thức \(A\) có bậc là 2.
b) Đa thức \(B\) không chia hết cho 6.
c) Với \(x = \frac{1}{2};\) \(y = 4\) thì \(B = - 6\).
d) Tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 6.
Quảng cáo
Trả lời:
Đáp án: a) Sai. b) Sai . c) Đúng. d) Sai.
⦁ Đa thức \(A\) có bậc là 3. Do đó ý a) sai.
⦁ Ta có \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\)
\[ = 3y \cdot 3y - 3y \cdot x - 2{x^2}{y^2}:\left( {\frac{2}{3}xy} \right) - 6x{y^3}:\left( {\frac{2}{3}xy} \right) + 4xy:\left( {\frac{2}{3}xy} \right)\]
\[ = 9{y^2} - 3xy - 3xy - 9{y^2} + 6\]
\[ = \left( {9{y^2} - 9{y^2}} \right) + \left( { - 3xy - 3xy} \right) + 6\]
\[ = - 6xy + 6 = 6\left( { - xy + 1} \right).\]
Vì \(6\left( { - xy + 1} \right)\, \vdots \,\,6\) với mọi giá trị nguyên của \(x,y\) nên \(B\) luôn chia hết cho 6 với mọi giá trị nguyên của biến \(x,y.\) Do đó ý b) sai.
⦁ Thay \(x = \frac{1}{2};\) \(y = 4\) vào biểu thức \(A = - 6xy + 6\) đã thu gọn được ở câu a, ta được:
\(A = - 6 \cdot \frac{1}{2} \cdot 4 + 6 = - 12 + 6 = - 6.\)
Vậy \(A = - 6\) khi \(x = \frac{1}{2};\) \(y = 4.\) Do đó ý c) sai.
⦁ Tổng của hai đa thức \(A\) và \(B\) là:
\[A + B = \left( {{x^2}y + 5xy - 1} \right) + \left( { - 6xy + 6} \right)\]
\[ = {x^2}y + 5xy - 1 - 6xy + 6\]
\[ = {x^2}y + \left( {5xy - 6xy} \right) + \left( {6 - 1} \right)\]
\[ = {x^2}y - xy + 5.\]
Như vậy, tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 5. Do đó ý d) sai.Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có \[{x^4}y + x - 2y{x^4} = {x^4}y - 2{x^4}y + x = - {x^4}y + x\].
Vậy đa thức \[{x^4}y + x - 2y{x^4}\] là đa thức chưa thu gọn.
Lời giải

Xét \(\Delta ABC\) vuông tại \(C\), theo định lí Pythagore, ta có:
\(A{C^2} = A{B^2} - B{C^2} = {\left( {\sqrt {117} } \right)^2} - {6^2} = 81\).
Suy ra \(AC = \sqrt {81} = 9\;({\rm{cm)}}\).
Do \(K\) là trung điểm của đoạn thẳng \(AC\) nên \(CK = \frac{1}{2}AC = 4,5\;\;({\rm{cm)}}.\)
Xét \(\Delta BCK\) vuông tại \(C\), theo định lí Pythagore ta có:\(B{K^2} = B{C^2} + C{K^2} = {6^2} + {4,5^2} = 56,25\).
Suy ra \(BK = \sqrt {56,25} = 7,5\;\;({\rm{cm)}}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.