Câu hỏi:

19/08/2025 107 Lưu

Cho hai đa thức:

\(A = {x^2}y + 5xy - 1\) và \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\).

a) Đa thức \(A\) có bậc là 2.

b) Đa thức \(B\) không chia hết cho 6.

c) Với \(x = \frac{1}{2};\) \(y = 4\) thì \(B = - 6\).

d) Tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 6.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:           a) Sai.             b) Sai  .           c) Đúng.          d) Sai.

Đa thức \(A\) có bậc là 3. Do đó ý a) sai.

Ta có \(B = 3y\left( {3y - x} \right) + \left( { - 2{x^2}{y^2} - 6x{y^3} + 4xy} \right):\frac{2}{3}xy\)

\[ = 3y \cdot 3y - 3y \cdot x - 2{x^2}{y^2}:\left( {\frac{2}{3}xy} \right) - 6x{y^3}:\left( {\frac{2}{3}xy} \right) + 4xy:\left( {\frac{2}{3}xy} \right)\]

\[ = 9{y^2} - 3xy - 3xy - 9{y^2} + 6\]

\[ = \left( {9{y^2} - 9{y^2}} \right) + \left( { - 3xy - 3xy} \right) + 6\]

\[ = - 6xy + 6 = 6\left( { - xy + 1} \right).\]

\(6\left( { - xy + 1} \right)\, \vdots \,\,6\) với mọi giá trị nguyên của \(x,y\) nên \(B\) luôn chia hết cho 6 với mọi giá trị nguyên của biến \(x,y.\) Do đó ý b) sai.

Thay \(x = \frac{1}{2};\) \(y = 4\) vào biểu thức \(A = - 6xy + 6\) đã thu gọn được ở câu a, ta được:

\(A = - 6 \cdot \frac{1}{2} \cdot 4 + 6 = - 12 + 6 = - 6.\)

Vậy \(A = - 6\) khi \(x = \frac{1}{2};\) \(y = 4.\) Do đó ý c) sai.

Tổng của hai đa thức \(A\) và \(B\) là:

\[A + B = \left( {{x^2}y + 5xy - 1} \right) + \left( { - 6xy + 6} \right)\]

\[ = {x^2}y + 5xy - 1 - 6xy + 6\]

\[ = {x^2}y + \left( {5xy - 6xy} \right) + \left( {6 - 1} \right)\]

\[ = {x^2}y - xy + 5.\]

Như vậy, tổng của hai đa thức \(A\) và \(B\) có hạng tử tự do là 5. Do đó ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ