Câu hỏi:

19/08/2025 57 Lưu

Tìm \(x,\) biết:

a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6.\)         b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0.\)                            c) \[{x^3} - 3{x^2} + 3x - 126 = 0.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \({\left( {x - 2} \right)^2} - \left( {x - 3} \right)\left( {x + 3} \right) = 6\)

\({x^2} - 4x + 4 - \left( {{x^2} - 9} \right) = 6\)

\({x^2} - 4x + 4 - {x^2} + 9 = 6\)

\(\left( {{x^2} - {x^2}} \right) - 4x = 6 - 4 - 9\)

\( - 4x = - 7\)

\(x = \frac{7}{4}\)

Vậy \(x = \frac{7}{4}.\)

b) \(2x\left( {x - 3} \right) - 5\left( {3 - x} \right) = 0\)

\(2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0\)

\(\left( {x - 3} \right)\left( {2x + 5} \right) = 0\)

\(x - 3 = 0\) hoặc \(2x + 5 = 0\)

\(x = 3\) hoặc \(2x = - 5\)

\(x = 3\) hoặc \(x = - \frac{5}{2}.\)

Vậy \(x \in \left\{ {3; - \frac{5}{2}} \right\}.\)

c) \[{x^3} - 3{x^2} + 3x - 126 = 0\]

\[{x^3} - 3{x^2} + 3x - 1 - 125 = 0\]

\[{\left( {x - 1} \right)^3} = 125\]

\[{\left( {x - 1} \right)^3} = {5^3}\]

\(x - 1 = 5\)

\(x = 6\)

Vậy \(x = 6.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ