Câu hỏi:

29/06/2025 31 Lưu

(0,5 điểm) Cho \(A = \frac{1}{5} + \frac{2}{{{5^2}}} + \frac{3}{{{5^3}}} + \frac{4}{{{5^4}}} + ... + \frac{{1\,\,000}}{{{5^{1\,\,000}}}}.\) Chứng minh rằng \(A < \frac{5}{{16}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Ta có: \(5A = 1 + \frac{2}{5} + \frac{3}{{{5^2}}} + \frac{4}{{{5^3}}} + ... + \frac{{1\,\,000}}{{{5^{999}}}}.\)

Suy ra \(5A - A = \left( {1 + \frac{2}{5} + \frac{3}{{{5^2}}} + \frac{4}{{{5^3}}} + ... + \frac{{1\,\,000}}{{{5^{999}}}}} \right) - \left( {\frac{1}{5} + \frac{2}{{{5^2}}} + \frac{3}{{{5^3}}} + \frac{4}{{{5^4}}} + ... + \frac{{1\,\,000}}{{{5^{1\,\,000}}}}} \right)\)

\(4A = 1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}} - \frac{{1\,\,000}}{{{5^{1\,\,000}}}}.\)

Đặt \(B = \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}}\).

Ta có \(5B = 1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{998}}}}.\)

Suy ra \(5B - B = \left( {1 + \frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{998}}}}} \right) - \left( {\frac{1}{5} + \frac{1}{{{5^2}}} + \frac{1}{{{5^3}}} + ... + \frac{1}{{{5^{999}}}}} \right)\)

\(4B = 1 - \frac{1}{{{5^{999}}}}\) nên \(B = \frac{1}{4} \cdot \left( {1 - \frac{1}{{{5^{999}}}}} \right)\).

Do đó, \(4A = 1 + \frac{1}{4} \cdot \left( {1 - \frac{1}{{{5^{999}}}}} \right) - \frac{{1\,\,000}}{{{5^{1\,\,000}}}} = \frac{5}{4} - \frac{1}{4} \cdot \frac{1}{{{5^{999}}}} - \frac{{1\,\,000}}{{{5^{1\,\,000}}}}.\)

Khi đó, \(A = \frac{5}{{16}} - \frac{1}{{16}} \cdot \frac{1}{{{5^{999}}}} - \frac{{250}}{{{5^{1\,\,000}}}} < \frac{5}{{16}}.\)

Vậy \(A < \frac{5}{{16}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Nhận thấy trên trục số từ số 0 đến số 1 được chia thành 5 phần bằng nhau và từ 0 đến \(A\) chiếm 3 phần bằng nhau nên điểm \(A\) biểu diễn phân số \(\frac{3}{5}.\)

Do đó, chọn đáp án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP