Hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Cho hình vẽ sau.
a) Điểm \(A\) thuộc các đường thẳng \(a,b,c\).
b) Điểm \(A\) không thuộc đường thẳng \(d\).
c) Có duy nhất một bộ ba điểm thẳng hàng trong hình vẽ trên.
d) Trên đường thẳng \(d\) lấy thêm bốn điểm phân biệt \(M,N,P,Q\) không trùng với điểm \(B,C,D.\). Khi đó, có tất cả \(8\) đường thẳng đi qua điểm \(A\) và một trong các điểm \(M,N,P,Q,B,C,D.\)
Hãy chọn đúng hoặc sai cho mỗi ý a), b), c), d).
Cho hình vẽ sau.

a) Điểm \(A\) thuộc các đường thẳng \(a,b,c\).
b) Điểm \(A\) không thuộc đường thẳng \(d\).
c) Có duy nhất một bộ ba điểm thẳng hàng trong hình vẽ trên.
d) Trên đường thẳng \(d\) lấy thêm bốn điểm phân biệt \(M,N,P,Q\) không trùng với điểm \(B,C,D.\). Khi đó, có tất cả \(8\) đường thẳng đi qua điểm \(A\) và một trong các điểm \(M,N,P,Q,B,C,D.\)
Quảng cáo
Trả lời:
Đáp án đúng là: a) Đ b) Đ c) Đ d) S
Quan sát hình vẽ, ta có:
a) Ta có điểm \(A\) thuộc các đường thẳng \(a,b,c\).
b) Điểm \(A\) không thuộc đường thẳng \(d\).
c) Có duy nhất một bộ ba điểm thẳng hàng trong hình vẽ trên, đó là: \(B,C,D\).
d) Trên đường thẳng \(d\) lấy thêm bốn điểm phân biệt \(M,N,P,Q\) không trùng với điểm \(B,C,D.\)
Khi đó, có tất cả \(7\) đường thẳng đi qua điểm \(A\) và một trong các điểm \(M,N,P,Q,B,C,D\), đó là:
\(AM,AN,AP,AQ,AB,AC,AD\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(A = \frac{1}{{11}} + \frac{1}{{12}} + \frac{1}{{13}} + ... + \frac{1}{{70}}\)
\(A = \frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{20}} + \frac{1}{{21}} + ... + \frac{1}{{30}} + \frac{1}{{31}} + ... + \frac{1}{{40}} + \frac{1}{{41}} + ... + \frac{1}{{50}} + \frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}} + \frac{1}{{61}} + ... + \frac{1}{{70}}\)
\(A = \left( {\frac{1}{{11}} + ... + \frac{1}{{20}}} \right) + \left( {\frac{1}{{21}} + ... + \frac{1}{{30}}} \right) + \left( {\frac{1}{{31}} + ... + \frac{1}{{40}}} \right) + \left( {\frac{1}{{41}} + ... + \frac{1}{{50}}} \right) + \left( {\frac{1}{{51}} + ... + \frac{1}{{60}}} \right) + \left( {\frac{1}{{61}} + ... + \frac{1}{{70}}} \right)\)
Nhận thấy \(\frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{20}} < \frac{1}{{10}} + \frac{1}{{10}} + ... + \frac{1}{{10}}\) hay \(\frac{1}{{11}} + \frac{1}{{12}} + ... + \frac{1}{{20}} < \frac{1}{{10}}.10 = 1\).
\(\frac{1}{{21}} + \frac{1}{{22}} + ... + \frac{1}{{30}} < \frac{1}{{20}} + \frac{1}{{20}} + ... + \frac{1}{{20}}\) hay \(\frac{1}{{21}} + \frac{1}{{22}} + ... + \frac{1}{{30}} < \frac{1}{{20}}.10 = \frac{1}{2}\)
\(\frac{1}{{31}} + \frac{1}{{32}} + ... + \frac{1}{{40}} < \frac{1}{{30}} + \frac{1}{{30}} + ... + \frac{1}{{30}}\) hay \(\frac{1}{{31}} + \frac{1}{{32}} + ... + \frac{1}{{40}} < \frac{1}{{30}}.10 = \frac{1}{3}\)
\(\frac{1}{{41}} + \frac{1}{{42}} + ... + \frac{1}{{50}} < \frac{1}{{40}} + \frac{1}{{40}} + ... + \frac{1}{{40}}\) hay \(\frac{1}{{41}} + \frac{1}{{42}} + ... + \frac{1}{{50}} < \frac{1}{{40}}.10 = \frac{1}{4}\)
\(\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}} < \frac{1}{{50}} + \frac{1}{{50}} + ... + \frac{1}{{50}}\) hay \(\frac{1}{{51}} + \frac{1}{{52}} + ... + \frac{1}{{60}} < \frac{1}{{50}}.10 = \frac{1}{5}\)
\(\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}} < \frac{1}{{60}} + \frac{1}{{60}} + ... + \frac{1}{{60}}\) hay \(\frac{1}{{61}} + \frac{1}{{62}} + ... + \frac{1}{{70}} < \frac{1}{{60}}.10 = \frac{1}{6}\)
Do đó, \(A < 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}\) hay \(A < \frac{{49}}{{20}} < \frac{{50}}{{20}} = \frac{5}{2}\).
Vậy \(\frac{1}{{11}} + \frac{1}{{12}} + \frac{1}{{13}} + ... + \frac{1}{{70}} < \frac{5}{2}\) (đpcm).
Lời giải
2.1.
Ta có tất cả các trục đối xứng của hình vẽ như sau:

2.2.
a) Ta có hình vẽ như sau:

b) Từ hình vẽ câu a), ta có: \(H \notin a,I \notin a,K \notin a,A \in a,B \in a.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.