Câu hỏi:
13/07/2024 31,930Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Vẽ ID ⊥ AB (D ∈ AB), IE ⊥ BC (E ∈ BC), IF ⊥ CA (F ∈ CA). Chứng minh ID = IE = IF.
Câu hỏi trong đề: Giải toán 7 Chương 2: Tam giác !!
Quảng cáo
Trả lời:
Xét ΔBID (góc D = 90º) và ΔBIE (góc E = 90º) có:
BI là cạnh chung
góc IBD = góc IBE (do BI là tia phân giác góc ABC)
⇒ ΔBID = ΔBIE (cạnh huyền - góc nhọn)
⇒ ID = IE (2 cạnh tương ứng) (1)
Tương tự, xét ΔCIE (góc E = 90º) và ΔCIF (góc F = 90º) có:
CI là cạnh chung
góc ICE = góc ICF (do CI là tia phân giác góc ACB)
⇒ ΔICE = ΔICF (cạnh huyền – góc nhọn)
⇒ IE = IF (2 cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IE = IF (đpcm)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Văn, Sử, Địa, GDCD lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Toán, Anh, KHTN lớp 7 (chương trình mới) ( 60.000₫ )
- Trọng tâm Văn - Sử - Địa - GDCD và Toán - Anh - KHTN lớp 7 (chương trình mới) ( 120.000₫ )
- Trọng tâm Toán - Văn - Anh, Toán - Anh - KHTN lớp 6 (chương trình mới) ( 126.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hai tam giác vuông BME và CMF có
⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)
⇒ BE = CF (hai cạnh tương ứng).
* Chú ý: Các em có thể suy nghĩ tại sao cần điều kiện AB ≠ AC ???
Lời giải
+ Hình 105: ΔABH và ΔACH cùng vuông tại H có:
BH = CH (gt)
AH cạnh chung
⇒ ΔABH = ΔACH (hai cạnh góc vuông)
+ Hình 106: Xét ΔDKE vuông tại K và ΔDKF vuông tại K có:
DK chung
⇒ ΔDKE và ΔDKF (cạnh góc vuông – góc nhọn kề).
+ Hình 107: Xét ΔABD vuông tại B và ΔACD vuông tại C có:
AD chung
⇒ ΔABD = ΔACD (cạnh huyền – góc nhọn )
+ Hình 108:
• ΔABD = ΔACD (cạnh huyền – góc nhọn) (giống hình 107).
⇒ AB = AC và BD = CD (hai cạnh tương ứng)
• Xét ΔABH vuông tại B và ΔACE vuông tại C có
Góc A chung
AB = AC
⇒ΔABH = ΔACE (cạnh góc vuông – góc nhọn kề).
• Xét ΔDBE vuông tại B và ΔDCH vuông tại C có:
BD = DC (chứng minh trên)
⇒ ΔDBE = ΔDCH (cạnh góc vuông – góc nhọn kề)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.