Tính \(A = \frac{1}{6} + \frac{1}{{12}} + \frac{1}{{20}} + \frac{1}{{30}} + \frac{1}{{42}} + \frac{1}{{56}} + \frac{1}{{72}} + \frac{1}{{90}}.\)
Tính \(A = \frac{1}{6} + \frac{1}{{12}} + \frac{1}{{20}} + \frac{1}{{30}} + \frac{1}{{42}} + \frac{1}{{56}} + \frac{1}{{72}} + \frac{1}{{90}}.\)
Quảng cáo
Trả lời:
Ta có: \(A = \frac{1}{6} + \frac{1}{{12}} + \frac{1}{{20}} + \frac{1}{{30}} + \frac{1}{{42}} + \frac{1}{{56}} + \frac{1}{{72}} + \frac{1}{{90}}\)
\(A = \frac{1}{{2.3}} + \frac{1}{{3.4}} + \frac{1}{{4.5}} + \frac{1}{{5.6}} + \frac{1}{{6.7}} + \frac{1}{{7.8}} + \frac{1}{{8.9}} + \frac{1}{{9.10}}\)
\(A = \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} + \frac{1}{5} - \frac{1}{6} + \frac{1}{6} - \frac{1}{7} + \frac{1}{7} - \frac{1}{8} + \frac{1}{8} - \frac{1}{9} + \frac{1}{9} - \frac{1}{{10}}\)
\(A = \frac{1}{2} - \frac{1}{{10}}\)
\(A = \frac{2}{5}.\)
Vậy \(A = \frac{2}{5}.\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(10.\)
Lời giải
Đáp án đúng là: B
Số tự nhiên nhỏ nhất thỏa mãn \(x > 10,35\) là \(11.\)
Lời giải
Đáp án: \(2\)
Do \(M\) nằm giữa \(P\) và \(Q\) nên ta có \(MQ + MP = PQ\) hay \(MP + MQ = 9{\rm{ }}\left( {{\rm{cm}}} \right)\).
Mà \(MP - MQ = 5{\rm{ cm}}{\rm{.}}\)
Suy ra \(MQ = \left( {9 - 5} \right):2 = 2{\rm{ }}\left( {{\rm{cm}}} \right){\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(MA + MB = AB.\)
B. \(MA + AB = MB\) và \(MA = MB.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
