Câu hỏi:
30/06/2025 4
a) Trong các chữ cái sau, chữ cái nào có nhiều hơn một trục đối xứng?
G I A P H O N V Đ C L P
b) Trong các hình sau: hình vuông, hình tam giác đều, hình lục giác đều, hình bình hành, hình chữ nhật, hình thoi, hình thang cân, những hình nào là hình vừa có trục đối xứng vừa có tâm đối xứng?
c) Cho hình bình hành \(ABCD.\) Vẽ hình đối xứng qua tâm là đỉnh \(A\) của hình bình hành \(ABCD.\)
a) Trong các chữ cái sau, chữ cái nào có nhiều hơn một trục đối xứng?
G I A P H O N V Đ C L P
b) Trong các hình sau: hình vuông, hình tam giác đều, hình lục giác đều, hình bình hành, hình chữ nhật, hình thoi, hình thang cân, những hình nào là hình vừa có trục đối xứng vừa có tâm đối xứng?
c) Cho hình bình hành \(ABCD.\) Vẽ hình đối xứng qua tâm là đỉnh \(A\) của hình bình hành \(ABCD.\)
Quảng cáo
Trả lời:
a) Chữ I, H, O là các chữ có 2 trục đối xứng (nhiều hơn 1 trục đối xứng).
b) Hình vuông, hình thoi, hình lục giác đều, hình chữ nhật là các hình vừa có trục đối xứng vừa có tâm đối xứng.
Hình tam giác đều, hình thang cân là hình không có tâm đối xứng.
Hình bình hành là hình không có trục đối xứng.
Vậy có 4 hình vừa có trục đối xứng vừa có tâm đối xứng là: Hình vuông, hình thoi, hình lục giác đều, hình chữ nhật.
c) Ta vẽ được hình đối xứng qua tâm là đỉnh \(A\) của hình bình hành \(ABCD\) như sau:

Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) a)
![1) Cho điểm \(O\) thuộc đường thẳng \(xy.\) Trên tia \(Oy\) lấy điểm \(A\) và \(B\) sao cho \(OA = 3{\rm{\;cm}}\) và \(OB = 5{\rm{\;cm}}.\) a) Trong ba điểm \(O,\,\,A,\,\,B\) thì điểm nào nằm giữa? b) Tính độ dài đoạn thẳng \(AB.\) c) Lấy điểm \(C\) thuộc tia \(Ox\) sao cho \(AC = 6{\rm{\;cm}}.\) Điểm \(O\) có phải là trung điểm của đoạn thẳng \(AC\) không? Tại sao? 2) Cho hình vẽ bên, biết \[\widehat {xOy} = 20^\circ ,\] \[\widehat {yOz} = 15^\circ ,\] \[\widehat {zOt} = 30^\circ ,\] \[\widehat {tOu} = 25^\circ .\] a) Sắp xếp các góc: \[\widehat {xOy},\] \[\widehat {yOz},\] \[\widehat {zOt},\] \[\widehat {tOu}\] theo thứ tự số đo tăng dần và cho biết các góc này là loại góc gì (góc bẹt, góc vuông, góc nhọn, góc tù)? b) Biết rằng \(\widehat {xOu} = \widehat {xOy} + \widehat {yOz} + \widehat {zOt} + \widehat {tOu}.\) Hãy cho biết góc \(xOu\) là loại góc gì. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid1-1751269065.png)
Vì hai điểm \(A,\,\,B\) cùng nằm trên tia \(Oy\) và \(OA < OB\) (do \(3{\rm{\;cm}} < 5{\rm{\;cm}})\) nên điểm \(A\) nằm giữa hai điểm \(O,\,\,B.\)
b) Vì điểm \(A\) nằm giữa hai điểm \(O,\,\,B\) nên ta có: \(OA + AB = OB\)
Suy ra \(AB = OB - OA = 5 - 3 = 2{\rm{\;(cm)}}{\rm{.}}\)
c)
![1) Cho điểm \(O\) thuộc đường thẳng \(xy.\) Trên tia \(Oy\) lấy điểm \(A\) và \(B\) sao cho \(OA = 3{\rm{\;cm}}\) và \(OB = 5{\rm{\;cm}}.\) a) Trong ba điểm \(O,\,\,A,\,\,B\) thì điểm nào nằm giữa? b) Tính độ dài đoạn thẳng \(AB.\) c) Lấy điểm \(C\) thuộc tia \(Ox\) sao cho \(AC = 6{\rm{\;cm}}.\) Điểm \(O\) có phải là trung điểm của đoạn thẳng \(AC\) không? Tại sao? 2) Cho hình vẽ bên, biết \[\widehat {xOy} = 20^\circ ,\] \[\widehat {yOz} = 15^\circ ,\] \[\widehat {zOt} = 30^\circ ,\] \[\widehat {tOu} = 25^\circ .\] a) Sắp xếp các góc: \[\widehat {xOy},\] \[\widehat {yOz},\] \[\widehat {zOt},\] \[\widehat {tOu}\] theo thứ tự số đo tăng dần và cho biết các góc này là loại góc gì (góc bẹt, góc vuông, góc nhọn, góc tù)? b) Biết rằng \(\widehat {xOu} = \widehat {xOy} + \widehat {yOz} + \widehat {zOt} + \widehat {tOu}.\) Hãy cho biết góc \(xOu\) là loại góc gì. (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2025/06/blobid2-1751269074.png)
Vì điểm \(A\) thuộc tia \(Oy,\) điểm \(C\) thuộc tia \[Ox\] mà hai tia \(Ox\) và \(Oy\) đối nhau nên điểm \(O\) nằm giữa hai điểm \(A\) và \(C\)
Do đó \(OC + OA = AC\)
Suy ra \(OC = AC - OA = 6 - 3 = 3{\rm{\;(cm)}}{\rm{.}}\)
Ta có nên điểm \(O\) nằm giữa hai điểm \(A,\,\,C\) và \(OA = OC\,\,\left( { = 3{\rm{\;cm}}} \right)\) nên điểm \(O\) là trung điểm của đoạn thẳng \(AC.\)
2) a) Ta có \(15^\circ < 20^\circ < 25^\circ < 30^\circ \) nên \[\widehat {yOz} < \widehat {xOy} < \widehat {tOu} < \widehat {zOt}.\]
Do đó ta sắp xếp được các góc đã cho theo thứ tự số đo tăng dần như sau: \[\widehat {yOz},\,\,\widehat {xOy},\,\,\widehat {tOu},\,\,\widehat {zOt}.\]
Ta thấy các góc trên đều có số đo lớn hơn \(0^\circ \) và nhỏ hơn \(90^\circ \) nên các góc này đều là góc nhọn.
b) Ta có: \(\widehat {xOu} = \widehat {xOy} + \widehat {yOz} + \widehat {zOt} + \widehat {tOu} = 20^\circ + 15^\circ + 30^\circ + 25^\circ = 90^\circ \)
Do đó góc \(xOu\) là góc vuông.
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.