Câu hỏi:

01/07/2025 22 Lưu

Một lô hàng gồm 10 sản phẩm loại A và 7 sản phẩm loại B. Lấy ngẫu nhiên 2 sản phẩm. Tính xác suất của biến cố E: “2 sản phẩm lấy ra có ít nhất một sản phẩm loại B”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tổng số sản phẩm loại A và loại B là \(10 + 7 = 17\) (sản phẩm).

Khi lấy ngẫu nhiên 2 sản phẩm:

Chọn sản phẩm thứ nhất chọn 1 trong 17 sản phẩm nên có 17 cách;

Chiếc sản phẩm thứ hai chọn \[1\] trong 16 sản phẩm còn lại nên có 16 cách.

Số cách chọn 2 sản phẩm trong số 17 sản phẩm là: \(\frac{{17.16}}{2} = 136\) (cách) (cứ mỗi cặp bị lặp lại 2 lần).

Có \(\frac{{10.9}}{2} = 45\) cách chọn chỉ lấy ra 2 sản phẩm loại A.

Số kết quả thuận lợi của biến cố E là \[136--45 = 91.\]

Vậy xác suất của biến cố E là \(\frac{{91}}{{136}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Tổng khối lượng các loại hạt điều thu hoạch được là:

\(1\,\,450 + 2\,\,230 + 1\,\,860 = 5\,\,540\) (kg).

Vậy tổng khối lượng các loại hạt điều thu hoạch được là \(5\,\,540\) kg.

b) Tổng khối lượng hạt điều loại 2 và loại 3 là: \(2\,\,230 + 1\,\,860 = 4\,\,090\) (kg).

Xác suất thực nghiệm của biến cố B là \(P\left( B \right) = \frac{{4\,\,090}}{{5\,\,540}} \approx 0,7383.\)

c) Gọi \(k\) là số kilôgam hạt điều loại 1 trong \(100\) kg hạt điều sau khi phân loại.

Ta có \[P\left( A \right) = \frac{k}{{100}} \approx 0,2617\] suy ra \(k \approx 0,2617 \cdot 100 = 26,17 \approx 26\) (kg).

Vậy có khoảng 26 kg hạt điều loại 1 trong 100 kg hạt điều sau khi phân loại.

Lời giải

a) Gọi hàm số bậc nhất cần tìm là \(y = ax + b\,\,\left( {a \ne 0} \right).\)

Theo giả thiết, ta có

• Với \(x = 0\,;\,\,y = 1\) thì \(0a + b = 1\) hay \(b = 1\).

• Với \(x = 6\,;\,\,y = 2\) thì \(6a + 1 = 2\) hay \(a = \frac{1}{6}\).

Vậy \(\left( d \right):y = \frac{1}{6}x + 1\).

b) Giao điểm của đường thẳng \(d\) với trục tung có ý nghĩa là chi phí ban đầu người dùng trả cho nhà mạng là 1 triệu đồng.

Trong thời gian 12 tháng, người dùng phải trả số tiền là: \(\frac{1}{6} \cdot 12 + 1 = 3\) (triệu đồng).