Cho hàm số \(y = \left( {{m^2} - 1} \right){x^2}\) với \(m\) là tham số.
a) Tìm \(m\) để đồ thị hàm số đi qua điểm \(A\left( { - 1;2} \right)\).
b) Điểm \(B\left( {1;3} \right);C\left( { - 1;2} \right)\) có thuộc đồ hàm số vừa tìm được hay không?
c) Tìm \(m\) để đồ thị hàm số đi qua điểm có tọa độ \(\left( {{x_0};{y_0}} \right)\), biết \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x + 2y = 3\\2x + y = 1\end{array} \right.\).
d) Vẽ đồ thị hàm số với các giá trị \(m\) vừa tìm được ở phần a), b) trên cùng một mặt phẳng tọa độ.
Cho hàm số \(y = \left( {{m^2} - 1} \right){x^2}\) với \(m\) là tham số.
a) Tìm \(m\) để đồ thị hàm số đi qua điểm \(A\left( { - 1;2} \right)\).
b) Điểm \(B\left( {1;3} \right);C\left( { - 1;2} \right)\) có thuộc đồ hàm số vừa tìm được hay không?
c) Tìm \(m\) để đồ thị hàm số đi qua điểm có tọa độ \(\left( {{x_0};{y_0}} \right)\), biết \(\left( {{x_0};{y_0}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x + 2y = 3\\2x + y = 1\end{array} \right.\).
d) Vẽ đồ thị hàm số với các giá trị \(m\) vừa tìm được ở phần a), b) trên cùng một mặt phẳng tọa độ.
Quảng cáo
Trả lời:
a) Thay \(x = - 1,y = 2\) vào hàm số, ta được: \(\left( {{m^2} - 1} \right).{\left( { - 1} \right)^2} = 2\) nên \({m^2} = 3\).
Suy ra \(m = \sqrt 3 \) hoặc \(m = - \sqrt 3 \).
Vậy đồ thị hàm số đi qua điểm \(A\left( { - 1;2} \right)\) là \(y = 2{x^2}\) khi \(m = \sqrt 3 \) hoặc \(m = - \sqrt 3 \).
b) Thay \(x = 1,y = 3\) vào hàm số \(y = 2{x^2}\), ta được: \(2 = 3\) (vô lí)
Do đó, điểm \(B\left( {1;3} \right)\) không thuộc đồ thị hàm số \(y = 2{x^2}\).
Thay \(x = - 1,y = 2\) vào hàm số \(y = 2{x^2}\), ta được: \(2.{\left( { - 1} \right)^2} = 2\).
Do đó, điểm \(C\left( { - 1;2} \right)\) thuộc đồ thị hàm số \(y = 2{x^2}\).
c) Giải hệ phương trình \(\left\{ \begin{array}{l}3x + 2y = 3\\2x + y = 1\end{array} \right.\) ta được \(\left\{ \begin{array}{l}x = - 1\\y = 3\end{array} \right.\).
Do đó, đồ thị hàm số \(y = \left( {{m^2} - 1} \right){x^2}\) đi qua điểm có tọa độ \(\left( { - 1;3} \right)\).
Thay \(x = - 1,y = 3\) vào \(y = \left( {{m^2} - 1} \right){x^2}\), ta có: \(\left( {{m^2} - 1} \right).{\left( { - 1} \right)^2} = 3\) suy ra \({m^2} = 4\).
Suy ra \(m = 2\) hoặc \(m = - 2\).
Vậy đồ thị hàm số đi qua điểm có tọa độ \(\left( { - 1;3} \right)\) là \(y = 3{x^2}\) khi \(m = 2\) hoặc \(m = - 2\).
d) Ta có bảng giá trị của hàm số \(y = 2{x^2}\) như sau:
|
\(x\) |
\( - 2\) |
\( - 1\) |
\(0\) |
\(1\) |
\(2\) |
|
\(y\) |
\(8\) |
\(2\) |
\(0\) |
\(2\) |
\(8\) |
Vậy đồ thị hàm số \(y = 2{x^2}\) đi qua điểm có tọa độ \(\left( { - 2;8} \right);\left( { - 1;2} \right);\left( {0;0} \right);\left( {1;2} \right);\left( {2;8} \right)\).
Ta có bảng giá trị của hàm số \(y = 3{x^2}\) như sau:
|
\(x\) |
\( - 2\) |
\( - 1\) |
\(0\) |
\(1\) |
\(2\) |
|
\(y\) |
\(12\) |
\(3\) |
\(0\) |
\(3\) |
\(12\) |
Vậy đồ thị hàm số \(y = 3{x^2}\) đi qua điểm có tọa độ \(\left( { - 2;12} \right);\left( { - 1;3} \right);\left( {0;0} \right);\left( {1;3} \right);\left( {2;12} \right)\).
Từ đây, ta có đồ thị hàm số như sau:

Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Với \(m = 3,\) ta có phương trình: \({x^2} - 8x + 16 = 0\) hay \({\left( {x - 4} \right)^2} = 0\), suy ra \(x - 4 = 0\).
Do đó, \(x = 4\).
Vậy phương trình có nghiệm \(x = 4\) khi \(m = 3.\)
b) Xét phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} + 3m - 2 = 0\) có:
\(\Delta ' = {\left[ { - \left( {m + 1} \right)} \right]^2} - {m^2} - 3m + 2 = - m + 3\)
Để phương trình có nghiệm thì \(\Delta ' \ge 0\) hay \( - m + 3 \ge 0\), suy ra \(m \le 3\).
Vậy \(m \le 3\) thì phương trình có nghiệm.
c) Để phương trình (1) có hai nghiệm phân biệt thì \(\Delta ' > 0\) hay \( - m + 3 > 0\) suy ra \(m < 3.\)
Theo hệ thức Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right)\\{x_1}{x_2} = {m^2} + 3m - 2\end{array} \right.\).
Lại có, \(A = 2018 + 3{x_1}{x_2} - x_1^2 - x_2^2\)
\(A = 2018 + 5{x_1}{x_2} - \left( {2{x_1}{x_2} + x_1^2 + x_2^2} \right)\)
\(A = 2018 + 5{x_1}{x_2} - {\left( {{x_1} + {x_2}} \right)^2}\)
\(A = 2018 + 5\left( {{m^2} + 3m - 2} \right) - {\left[ {2\left( {m + 1} \right)} \right]^2}\)
\(A = 2018 + 5{m^2} + 15m - 10 - 4{m^2} - 8m - 4\)
\(A = {m^2} + 7m + 2004\)
\(A = {\left( {m + \frac{7}{2}} \right)^2} + \frac{{7967}}{4}\)
Ta có: \({\left( {m + \frac{7}{2}} \right)^2} \ge 0\) với mọi \(m\), do đó \({\left( {m + \frac{7}{2}} \right)^2} + \frac{{7967}}{4} \ge \frac{{7967}}{4}\) hay \(A \ge \frac{{7967}}{4}\).
Vậy GTNN của \(A = \frac{{7967}}{4}\) khi \(m = - \frac{7}{2}.\)
Lời giải
1. a) Thực hiện thay \[x = - 1\] vào các phương trình, ta có:
• Thay \[x = - 1\] vào phương trình \[\sqrt 3 {x^2} - \left( {1 - \sqrt 3 } \right)x - 1 = 0\] ta được:
\[\sqrt 3 .{\left( { - 1} \right)^2} - \left( {1 - \sqrt 3 } \right).\left( { - 1} \right) - 1 = 0\].
Do đó, \[x = - 1\] là nghiệm của phương trình \[\sqrt 3 {x^2} - \left( {1 - \sqrt 3 } \right)x - 1 = 0\].
• Thay \[x = - 1\] vào phương trình \[{x^2} - 6x - 8 = 0\], ta được:
\[{\left( { - 1} \right)^2} - 6.\left( { - 1} \right) - 8 = - 1 \ne 0\].
Do đó, \[x = - 1\] không là nghiệm của phương trình \[{x^2} - 6x - 8 = 0\].
• Thay \[x = - 1\] vào phương trình \[ - 2{x^2} - 5x - 3 = 0\], ta được:
\[ - 2.{\left( { - 1} \right)^2} - 5.\left( { - 1} \right) - 3 = 0.\]
Do đó, \[x = - 1\] là nghiệm của phương trình \[ - 2{x^2} - 5x - 3 = 0\].
• Thay \[x = - 1\] vào phương trình \[ - 2{x^2} - 5x + 7 = 0,\] ta được:
\[ - 2.{\left( { - 1} \right)^2} - 5.\left( { - 1} \right) + 7 = 10 \ne 0\].
Do đó, \[x = - 1\] là nghiệm của phương trình \[ - 2{x^2} - 5x + 7 = 0\].
Vậy phương trình có \[x = - 1\] là nghiệm là \[ - 2{x^2} - 5x - 3 = 0\] và \[\sqrt 3 {x^2} - \left( {1 - \sqrt 3 } \right)x - 1 = 0\].
b) • Giải phương trình \[ - 2{x^2} - 5x - 3 = 0\] có \[a + b + c = - 2 - \left( { - 5} \right) + \left( { - 3} \right) = 0\].
Do đó nghiệm của phương trình là \[x = - 1\] và \[x = - \frac{3}{2}\].
Vậy phương trình có nghiệm \[\left\{ { - 1; - \frac{3}{2}} \right\}\].
• Giải phương trình \[\sqrt 3 {x^2} - \left( {1 - \sqrt 3 } \right)x - 1 = 0\], ta thấy: \[a - b + c = \sqrt 3 + 1 - \sqrt 3 - 1 = 0\].
Do đó nghiệm của phương trình là \[x = - 1\] và \[x = \frac{{\sqrt 3 }}{3}\].
Vậy nghiệm của phương trình là \[\left\{ { - 1;\frac{{\sqrt 3 }}{3}} \right\}\].
2. Gọi chiều dài và chiều rộng mảnh vườn lần lượt là \(x{\rm{\;(m)}}\) và \(y{\rm{\;(m)}}\) \(\left( {x > 0,\,\,y > 0} \right).\)
Vì mảnh vườn có chu vi là \(70{\rm{\;m}}\) nên ta có phương trình \[2\left( {x + y} \right) = 70\] hay \(x + y = 35\).
Vì mảnh vườn có diện tích là \(250{\rm{\;}}{{\rm{m}}^2}\) nên ta có phương trình \(xy = 250\).
Ta có: \(x + y = 35\) và \(xy = 250\) và \({35^2} - 4 \cdot 250 = 225 > 0\) nên \(x,\,\,y\) là nghiệm của phương trình:
\({t^2} - 35t + 250 = 0.\)
Phương trình trên có hai nghiệm phân biệt là \({t_1} = 10\) (thỏa mãn); \({t_2} = 25\) (thỏa mãn).
Mà chiều dài luôn lớn hơn chiều rộng nên chiều dài, chiều rộng của mảnh vườn lần lượt là \(25{\rm{\;m}},\,\,10{\rm{\;m}}.\)
Khu trồng hoa \(BEDF\) có \(BE = DF\) và \(BE\,{\rm{//}}\,DF\) nên có dạng một hình bình hành, do đó diện tích của khu trồng hoa là: \(6 \cdot 10 = 60{\rm{\;(}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)
Số tiền chủ vườn phải trả cho người trồng hoa để trồng hết khu trồng hoa đó là:
\(60 \cdot 50\,\,000 = 3\,\,000\,\,000\) (đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![1. Xét các phương trình sau: \[\sqrt 3 {x^2} - \left( {1 - \sqrt 3 } \right)x - 1 = 0;\] \[{x^2} - 6x - 8 = 0;\] \[ - 2{x^2} - 5x - 3 = 0;\] \[ - 2{x^2} - 5x + 7 = 0.\] a) Trong các phương trình trên, phương trình nào có nghiệm \[x = - 1.\] b) Với các phương trình nhận \[x = - 1\] là nghiệm, hãy tìm nghiệm còn lại của phương trình đó. 2. Giải bài toán sau bằng cách lập phương trình: Một mảnh vườn hình chữ nhật \(ABCD\) có chu vi và diện tích lần lượt là \(70{\rm{\;m}}\) và \(250{\rm{\;}}{{\rm{m}}^2}.\) Người ta chia mảnh vườn đó thành ba khu vực: khu tiểu cảnh \(ADE,\) khu trồng hoa \(BEDF,\) khu thư giãn \(BCF\) với \(BE = DF = 6{\rm{\;m}}\) như mô tả ở hình bên. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid5-1751341472.png)
