Câu hỏi:

19/08/2025 93 Lưu

     1. Trong mặt phẳng tọa độ \(Oxy,\) cho điểm \(A\left( {3;\,\,3} \right)\) và \(B\left( { - 3\sqrt 2 ;\,\,0} \right).\) Hỏi phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(B\) có góc quay bằng bao nhiêu độ?

       2. Cho hình vẽ bên.

     1. Trong mặt phẳng tọa độ \(Oxy,\) cho điểm \(A\left( {3;\,\,3} \right)\) và \(B\left( { - 3\sqrt 2 ;\,\,0} \right).\) Hỏi phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(B\) có góc quay bằng bao nhiêu độ?         2. Cho hình vẽ bên.  Tính số đo góc \(ADC\) bằng bao nhiêu độ? (ảnh 1)

Tính số đo góc \(ADC\) bằng bao nhiêu độ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

       1. Gọi \[H\] là hình chiếu của \[A\] trên \[Oy.\] Ta có \(A\left( {3;\,\,3} \right)\) nên \(OH = AH = \left| 3 \right| = 3.\)

     1. Trong mặt phẳng tọa độ \(Oxy,\) cho điểm \(A\left( {3;\,\,3} \right)\) và \(B\left( { - 3\sqrt 2 ;\,\,0} \right).\) Hỏi phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(B\) có góc quay bằng bao nhiêu độ?         2. Cho hình vẽ bên.  Tính số đo góc \(ADC\) bằng bao nhiêu độ? (ảnh 2)

Xét \[\Delta AOH\] vuông tại \[H,\] theo định lí Pythagore ta có: \[O{A^2} = O{H^2} + A{H^2}\]

Suy ra \(OA = \sqrt {O{H^2} + A{H^2}}  = \sqrt {{3^2} + {3^2}}  = \sqrt {18}  = 3\sqrt 2 .\)

Ta cũng có \(\sin \widehat {AOH} = \frac{{AH}}{{OA}} = \frac{3}{{3\sqrt 2 }} = \frac{{\sqrt 2 }}{2}.\) Suy ra \(\widehat {AOH} = 45^\circ .\)

Ta có điểm \(B\left( { - 3\sqrt 2 ;\,\,0} \right)\) nằm trên trục \[Ox\] nên \(OB = \left| { - 3\sqrt 2 } \right| = 3\sqrt 2 .\) Khi đó \(OA = OB = 3\sqrt 2 .\)Mặt khác, \(\widehat {AOB} = \widehat {AOH} + \widehat {HOB} = 45^\circ  + 90^\circ  = 135^\circ .\)

Như vậy, phép quay \(135^\circ \) ngược chiều kim đồng hồ quanh gốc tọa độ biến điểm \(A\) thành điểm \(B\).

       2.

     1. Trong mặt phẳng tọa độ \(Oxy,\) cho điểm \(A\left( {3;\,\,3} \right)\) và \(B\left( { - 3\sqrt 2 ;\,\,0} \right).\) Hỏi phép quay ngược chiều tâm \(O\) biến điểm \(A\) thành điểm \(B\) có góc quay bằng bao nhiêu độ?         2. Cho hình vẽ bên.  Tính số đo góc \(ADC\) bằng bao nhiêu độ? (ảnh 3)

Xét đường tròn \(\left( O \right),\) ta có \(\widehat {ABD} = \widehat {ACD} = 60^\circ \) (hai góc nội tiếp cùng chắn cung \(AD)\)

Tứ giác \(ABCD\) nội tiếp đường tròn nên \(\widehat {ADC} + \widehat {ABC} = 180^\circ \).

Suy ra \[\widehat {ADC} = 180^\circ  - \widehat {ABC} = 180^\circ  - \left( {\widehat {ABD} + \widehat {DBC}} \right) = 180^\circ  - \left( {60^\circ  + 40^\circ } \right) = 80^\circ .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

     a) Với \(m = 3,\) ta có phương trình: \({x^2} - 8x + 16 = 0\) hay \({\left( {x - 4} \right)^2} = 0\), suy ra \(x - 4 = 0\).

Do đó, \(x = 4\).

Vậy phương trình có nghiệm \(x = 4\) khi \(m = 3.\)

     b) Xét phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} + 3m - 2 = 0\) có:

\(\Delta ' = {\left[ { - \left( {m + 1} \right)} \right]^2} - {m^2} - 3m + 2 =  - m + 3\)

Để phương trình có nghiệm thì \(\Delta ' \ge 0\) hay \( - m + 3 \ge 0\), suy ra \(m \le 3\).

Vậy \(m \le 3\) thì phương trình có nghiệm.

     c) Để phương trình (1) có hai nghiệm phân biệt thì \(\Delta ' > 0\) hay \( - m + 3 > 0\) suy ra \(m < 3.\)

Theo hệ thức Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right)\\{x_1}{x_2} = {m^2} + 3m - 2\end{array} \right.\).

Lại có, \(A = 2018 + 3{x_1}{x_2} - x_1^2 - x_2^2\)

         \(A = 2018 + 5{x_1}{x_2} - \left( {2{x_1}{x_2} + x_1^2 + x_2^2} \right)\)

         \(A = 2018 + 5{x_1}{x_2} - {\left( {{x_1} + {x_2}} \right)^2}\)

         \(A = 2018 + 5\left( {{m^2} + 3m - 2} \right) - {\left[ {2\left( {m + 1} \right)} \right]^2}\)

         \(A = 2018 + 5{m^2} + 15m - 10 - 4{m^2} - 8m - 4\)

         \(A = {m^2} + 7m + 2004\)

         \(A = {\left( {m + \frac{7}{2}} \right)^2} + \frac{{7967}}{4}\)

Ta có: \({\left( {m + \frac{7}{2}} \right)^2} \ge 0\) với mọi \(m\), do đó \({\left( {m + \frac{7}{2}} \right)^2} + \frac{{7967}}{4} \ge \frac{{7967}}{4}\) hay \(A \ge \frac{{7967}}{4}\).

Vậy GTNN của \(A = \frac{{7967}}{4}\) khi \(m =  - \frac{7}{2}.\)

Lời giải

Cho đường tròn tâm \(I\) nội tiếp tam giác \[ABC\] tiếp xúc với \[AB,{\rm{ }}AC\] lần lượt tại \[F\] và \[E.\] Kẻ \[CK\] vuông góc với \[BI.\] Chứng minh rằng: a) Tứ giác \(AEIF\) là tứ giác nội tiếp. b) \(\widehat {AIF} = \widehat {KIC}\) và ba điểm \[F,{\rm{ }}E,{\rm{ }}K\] thẳng hàng. (ảnh 1)

     a) Vì \(F,\,\,E\) là tiếp điểm của đường tròn \(\left( I \right)\) nội tiếp tam giác \(ABC\) nên \[IF \bot AB,\,\,IE \bot AC.\]

Do đó \(\widehat {IFA} = \widehat {IEA} = 90^\circ \), nên hai tam giác \(AIF,\,\,AIE\) là hai tam giác vuông có cùng cạnh huyền \(AI\)

Do đó đường tròn ngoại tiếp hai tam giác \(AIF,\,\,AIE\) là đường tròn đường kính \(AI\) hay bốn điểm \(A,\,\,E,\,\,I,\,\,F\) cùng nằm trên đường tròn đường kính \(AI.\)

Vậy tứ giác \(AEIF\) là tứ giác nội tiếp.

     b) Đường tròn tâm \(I\) nội tiếp tam giác \(ABC\) nên \(AI,\,\,BI,\,\,CI\) là các đường phân giác của tam giác.

Do đó \(\widehat {IAF} = \frac{1}{2}\widehat {BAC};\,\,\widehat {IBC} = \frac{1}{2}\widehat {ABC};\,\,\widehat {ICB} = \frac{1}{2}\widehat {ACB}\).

Ta có: \(\widehat {AIF} = 90^\circ  - \widehat {IAF} = 90^\circ  - \frac{1}{2}\widehat {BAC}\). (1)

\[\widehat {IBC} + \widehat {ICB} = \frac{1}{2}\widehat {ABC} + \frac{1}{2}\widehat {ACB} = \frac{1}{2}\left( {\widehat {ABC} + \widehat {ACB}} \right) = \frac{1}{2}\left( {180^\circ  - \widehat {BAC}} \right) = 90^\circ  - \frac{1}{2}\widehat {BAC}.\] (2)

Xét \(\Delta IBC\) có \(\widehat {KIC}\) là góc ngoài tại đỉnh \(I\) nên \(\widehat {KIC} = \widehat {IBC} + \widehat {ICB}.\) (3)

Từ (1), (2) và (3) suy ra \(\widehat {AIF} = \widehat {KIC}.\) (4)

Tứ giác \(AEIF\) là tứ giác nội tiếp nên \(\widehat {AEF} = \widehat {AIF}\) (hai góc nội tiếp cùng chắn cung \(AF).\) (5)

Chứng minh tương tự câu 1, ta có tứ giác \(IEKC\) nội tiếp đường tròn đường kính \(IC.\)

Do đó \(\widehat {KEC} = \widehat {KIC}\) (hai góc nội tiếp cùng chắn cung \(KC).\) (6)

Từ (4), (5), (6) ta có \(\widehat {AEF} = \widehat {KEC}\).

Mà \(\widehat {AEF} + \widehat {FEC} = 180^\circ \) nên \(\widehat {KEC} + \widehat {FEC} = 180^\circ \) hay ba điểm \(F,\,\,E,\,\,K\) thẳng hàng.