Cho phương trình \({x^2} - 2x + m = 0\) (1) (\(x\) là ẩn số)
a) Giải phương trình (1) khi \(m = 2\).
b) Tìm các giá trị của \(m\) để phương trình (1) có nghiệm.
c) Tìm các giá trị của \(m\) để phương trình (1) có nghiệm \({x_1},{x_2}\) thỏa mãn đẳng thức:
\(x_1^3{x_2} + {x_1}x_2^3 - 2x_1^2x_2^2 = 5\).
Cho phương trình \({x^2} - 2x + m = 0\) (1) (\(x\) là ẩn số)
a) Giải phương trình (1) khi \(m = 2\).
b) Tìm các giá trị của \(m\) để phương trình (1) có nghiệm.
c) Tìm các giá trị của \(m\) để phương trình (1) có nghiệm \({x_1},{x_2}\) thỏa mãn đẳng thức:
\(x_1^3{x_2} + {x_1}x_2^3 - 2x_1^2x_2^2 = 5\).
Quảng cáo
Trả lời:
a) Với \(m = 2\), ta có: \({x^2} - 2x + 2 = 0\) hay \({\left( {x - 1} \right)^2} + 1 = 0\) (vô lí do \({\left( {x - 1} \right)^2} + 1 > 0\))
Vậy với \(m = 2\) thì phương trình (1) vô nghiệm.
b) Xét phương trình: \({x^2} - 2x + m = 0\) có \(\Delta ' = 1 - m\).
Để phương trình (1) có nghiệm thì \(\Delta ' \ge 0\) hay \(1 - m \ge 0\) nên \(m \le 1.\)
Vậy phương trình có nghiệm khi \(m \le 1.\)
c) Phương trình: \({x^2} - 2x + m = 0\) có \(\Delta ' = 1 - m\).
Để phương trình có hai nghiệm phân biệt thì \(\Delta ' > 0\) hay \(1 - m > 0\) nên \(m < 1.\)
Theo hệ thức Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\\{x_1}{x_2} = m\end{array} \right.\).
Lại có: \(x_1^3{x_2} + {x_1}x_2^3 - 2x_1^2x_2^2 = 5\)
\({x_1}{x_2}\left( {x_1^2 + x_2^2} \right) - x_1^2x_2^2 = 5\)
\({x_1}{x_2}\left( {x_1^2 + x_2^2 + 2{x_1}{x_2} - 2{x_1}{x_2}} \right) - 2x_1^2x_2^2 = 5\)
\({x_1}{x_2}\left[ {{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \right] - 2x_1^2x_2^2 = 5\)
Suy ra \(4m - 2{m^2} - 2{m^2} = 5\) hay \( - 4{m^2} + 4m - 5 = 0\)
Suy ra \( - \left( {4{m^2} - 4m + 1} \right) - 4 = 0\) hay \( - {\left( {2m - 1} \right)^2} - 4 = 0\).
Nhận thấy \( - {\left( {2m - 1} \right)^2} \le 0\) với mọi \(m < 1.\)
Suy ra \( - {\left( {2m - 1} \right)^2} - 4 < 0\) với mọi \(m < 1.\)
Do đó, phương trình \( - 4{m^2} + 4m - 5 = 0\) vô nghiệm.
Vậy không có giá trị \(m\) thỏa mãn.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì điểm \(B\) nằm trên đường tròn đường kính \(AD\) nên \(\widehat {ABD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Do \(\Delta ABE\) vuông tại \(B\) nên đường tròn ngoại tiếp tam giác có tâm là trung điểm \(AE\) hay đường tròn ngoại tiếp tam giác \(ABE\) có đường kính \(AE\).
Tương tự, \(EF \bot AD\) nên \(\Delta AEF\) vuông tại \(F,\) có đường tròn ngoại tiếp tam giác là đường tròn đường kính \(AE.\)
Do đó, các điểm \(A,\,\,B,\,\,E,\,\,F\) đều nằm trên đường tròn đường kính \(AE.\)
Vậy tứ giác \(ABEF\) nội tiếp đường tròn đường kính \(AE.\)
b) Tứ giác \(ABEF\) nội tiếp nên \(\widehat {BAE} = \widehat {BFE}\) (hai góc nội tiếp cùng chắn cung \(BE).\) (1)
Chứng minh tương tự câu a) ta có tứ giác \(CDFE\) nội tiếp đường tròn đường kính \(DE.\)
Suy ra \(\widehat {EFC} = \widehat {EDC}\) (hai góc nội tiếp cùng chắn cung \(EC).\) (2)
Lại có tứ giác \(ABCD\) nội tiếp đường tròn \(\left( O \right)\) nên \(\widehat {BAC} = \widehat {BDC}\) (hai góc nội tiếp cùng chắn cung \(BC)\) hay \(\widehat {BAE} = \widehat {EDC}.\) (3)
Từ (1), (2), (3) suy ra \(\widehat {BFE} = \widehat {EFC}\) hay \(FE\) là tia phân giác của \(\widehat {BFC}.\)
Chứng minh tương tự như trên, ta có \(BD\) là tia phân giác của \(\widehat {CBF}.\)
Xét \(\Delta BCF\) có \(BD,\,\,FE\) là hai đường phân giác của tam giác cắt nhau tại \(E\) nên \(E\) là giao điểm ba đường phân giác của tam giác này.
Do đó \(E\) là tâm đường tròn nội tiếp tam giác \(BCF.\)
Lời giải
1. a) Trong các phương trình trên, phương trình bậc hai một ẩn là: \( - {x^2} - 7x - 6 = 0;\)\({x^2} - 2\sqrt 2 x + 2 = 0\).
• Với phương trình \( - {x^2} - 7x - 6 = 0,\) ta có \(a = - 1,b = - 7,c = - 6\).
• Với phương trình \({x^2} - 2\sqrt 2 x + 2 = 0\), ta có \(a = 1,b = 2\sqrt 2 ,c = 2\).
b) • Giải phương trình \( - {x^2} - 7x - 6 = 0,\) ta thấy \(a - b + c = 1 - \left( { - 7} \right) + 6 = 0\) nên phương trình có hai nghiệm \(x = - 1\) và \(x = - 6\).
Vậy phương trình có nghiệm là \(\left\{ { - 1; - 6} \right\}\).
• Giải phương trình \({x^2} - 2\sqrt 2 x + 2 = 0\), ta được: \({x^2} - 2\sqrt 2 x + 2 = 0\) hay \({\left( {x - \sqrt 2 } \right)^2} = 0\)
Suy ra \(x - \sqrt 2 = 0\) nên \(x = \sqrt 2 \).
Vậy phương trình có nghiệm là \(\left\{ {\sqrt 2 } \right\}\).
2. Gọi khối lượng riêng của miếng kim loại thứ nhất là \(x\) (g/cm3) \(\left( {x > 1} \right).\)
Khối lượng riêng của miếng kim loại thứ hai là \(x - 1\) (g/cm3).
Thể tích của miếng kim loại thứ nhất là: \(\frac{{880}}{x}\) (cm3).
Thể tích của miếng kim loại thứ hai là: \(\frac{{858}}{{x - 1}}\) (cm3).
Theo đề bài, thể tích của miếng thứ nhất nhỏ hơn thể tích của miếng thứ hai là 10 cm3 nên ta có phương trình: \(\frac{{858}}{{x - 1}} - \frac{{880}}{x} = 10.\)
Giải phương trình:
\(\frac{{858}}{{x - 1}} - \frac{{880}}{x} = 10\)
\(\frac{{858x}}{{x\left( {x - 1} \right)}} - \frac{{880\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} = \frac{{10x\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}}\)
\(858x - 880\left( {x - 1} \right) = 10x\left( {x - 1} \right)\)
\(858x - 880x + 880 = 10{x^2} - 10x\)
\(10{x^2} + 12x - 880 = 0\)
\(5{x^2} + 6x - 440 = 0\)
Giải phương trình trên ta được: \({x_1} = - 10;\,\,{x_2} = 8,8.\)
Ta thấy chỉ có giá trị \({x_2} = 8,8\) thỏa mãn điều kiện.
Vậy khối lượng riêng của miếng kim loại thứ nhất là \(8,8\) g/cm3; khối lượng riêng của miếng kim loại thứ hai là \(8,8 - 1 = 7,8\) (g/cm3).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.