(2,0 điểm) Giải các phương trình và bất phương trình sau:
a) \(\frac{{x - 1}}{{x + 2}} - \frac{x}{{x - 2}} = \frac{{4 - 6x}}{{{x^2} - 4}};\)
b) \[\frac{{2x + 4}}{3} - \frac{{4x - 7}}{{18}} > \frac{{2x - 5}}{9} - \frac{{2x - 1}}{{15}}.\]
Quảng cáo
Trả lời:
Hướng dẫn giải
a) \(\frac{{x - 1}}{{x + 2}} - \frac{x}{{x - 2}} = \frac{{4 - 6x}}{{{x^2} - 4}};\) Điều kiện xác định \(x - 2 \ne 0\) và \(x + 2 \ne 0\) hay \(x \ne 2\) và \(x \ne - 2.\) Quy đồng mẫu hai vế của phương trình, ta được \[\frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{x\left( {x + 2} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} = \frac{{4 - 6x}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\] Suy ra \[\left( {x - 1} \right)\left( {x - 2} \right) - x\left( {x + 2} \right) = 4 - 6x\] \[{x^2} - 3x + 2 - {x^2} + 2x = 4 - 6x\] \[ - 5x + 2 = 4 - 6x\] \[6x - 5x = 4 - 2\] \[x = 2\] Giá trị \[x = 2\] không thỏa mãn ĐKXĐ. Vậy phương trình đã cho vô nghiệm. |
b) \[\frac{{2x + 4}}{3} - \frac{{4x - 7}}{{18}} > \frac{{2x - 5}}{9} - \frac{{2x - 1}}{{15}}\] \[\frac{{30\left( {2x + 4} \right)}}{{90}} - \frac{{5\left( {4x - 7} \right)}}{{90}} > \frac{{10\left( {2x - 5} \right)}}{{90}} - \frac{{6\left( {2x - 1} \right)}}{{90}}\] \[30\left( {2x + 4} \right) - 5\left( {4x - 7} \right) > 10\left( {2x - 5} \right) - 6\left( {2x - 1} \right)\] \[60x + 120 - 20x + 35 > 20x - 50 - 12x + 6\] \[60x - 20x - 20x + 12x > - 50 + 6 - 120 - 35\] \[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,32x > - 199\] \[\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x > \frac{{ - 199}}{{32}}\] Vậy nghiệm của bất phương trình đã cho là \[x > \frac{{ - 199}}{{32}}.\] |
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: \(x = 1.\)
Thay \(x = 1\) vào bất phương trình, ta được \(3 \cdot 1 - 4 = - 1 \le 0\) là khẳng định đúng.
Do đó, \(x = 1\) là một nghiệm của bất phương trình đã cho.
Thay \(x = 2\) vào bất phương trình, ta được \(3 \cdot 2 - 4 = 2 \le 0\) là khẳng định sai.
Do đó, \(x = 2\) không là một nghiệm của bất phương trình đã cho.
Lời giải
Hướng dẫn giải
a) Xét \[\Delta ABH\] vuông tại \[H,\] ta có: \[AH = AB \cdot \sin B = 4 \cdot \sin 40^\circ \approx 2,57\] (cm); \(BH = AB \cdot \cos B = 4 \cdot \cos 40^\circ \approx 3,06\) (cm). Ta có \(BC = BH + HC\) Suy ra \(HC = BC - BH \approx 4,5 - 3,06 = 1,44\) (cm). |
|
Xét \[\Delta AHC\] vuông tại \[H\], theo định lí Pythagore, ta có:
\[A{C^2} = A{H^2} + H{C^2} \approx 2,{57^2} + 1,{44^2} = 8,6785\]
Suy ra \(AC \approx 2,95\) (cm).
Trong \[\Delta AHC\], ta cũng có: \(\tan C = \frac{{AH}}{{HC}} \approx \frac{{2,57}}{{1,44}} = \frac{{257}}{{144}}.\) Suy ra \(\widehat {C\,} \approx 60^\circ 44'.\)
b) Đặt: \(BC = x\,\,\left( {\rm{m}} \right);\) \(AC = AB + BC = 500 + x\,\,\left( {\rm{m}} \right)\).
Xét \(\Delta ACD\) vuông tại \(C,\) ta có: \[CD = AC \cdot {\rm{tan}}\widehat {CAD} = \left( {500 + x} \right) \cdot {\rm{tan}}34^\circ .\]
Xét \(\Delta BCD\) vuông tại \(C,\) ta có: \(CD = BC \cdot {\rm{tan}}\widehat {CBD} = x \cdot {\rm{tan}}38^\circ \).
Do đó, ta có: \(\;\left( {500 + x} \right) \cdot {\rm{tan}}34^\circ = x \cdot {\rm{tan}}38^\circ \)
\(500 \cdot {\rm{tan}}34^\circ + x \cdot {\rm{tan}}34^\circ = x \cdot {\rm{tan}}38^\circ \)
\(\;x \cdot {\rm{tan}}38^\circ - x \cdot {\rm{tan}}34^\circ = 500 \cdot {\rm{tan}}34^\circ \)
\(\;x \cdot \left( {{\rm{tan}}38^\circ - {\rm{tan}}34^\circ } \right) = 500 \cdot {\rm{tan}}34^\circ \)
\(\;x = \frac{{500 \cdot {\rm{tan}}34^\circ }}{{{\rm{tan}}38^\circ - {\rm{tan}}34^\circ }} \approx 3\,\,158,5\,\,({\rm{m)}}{\rm{.}}\)
Suy ra \(CD = x \cdot {\rm{tan}}38^\circ \approx 3\,\,158,5 \cdot {\rm{tan}}38^\circ \approx 2468\,\,({\rm{m}}).\)
Vậy ngọn núi cao khoảng \(2\,\,468\) mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.