Câu hỏi:

05/07/2025 17

Cho tam giác \[ABC\] vuông tại \[C\] có \[BC = 1,2\,\,{\rm{cm}}\,{\rm{, }}AC = 0,9\,\,{\rm{cm}}.\] Tính \[\sin B + \cos B.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp số: \[1,4.\]

Cho tam giác   A B C   vuông tại   C   có   B C = 1 , 2 c m , A C = 0 , 9 c m .   Tính   sin B + cos B . (ảnh 1)

Theo định lí Pythagore, ta có:

\(A{B^2} = A{C^2} + B{C^2}\)

Suy ra \[AB = \sqrt {0,{9^2} + 1,{2^2}} = 1,5\,\,\left( {{\rm{cm}}} \right)\].

Xét tam giác \(ABC\) vuông tại \(C\) có:

\(\sin B = \frac{{AC}}{{AB}} = \frac{{0,9}}{{1,5}} = \frac{3}{5} = 0,6\);

\(\cos B = \frac{{BC}}{{AB}} = \frac{{1,2}}{{1,5}} = \frac{4}{5} = 0,8.\)

Do đó \[\sin B + \cos B = 0,6 + 0,8 = 1,4.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1.     Xét \(\Delta ABC\) vuông tại \(A,\) ta có:

A triangle with numbers and a square

AI-generated content may be incorrect.

\(\sin C = \frac{{AB}}{{BC}},\) suy ra \(BC = \frac{{AB}}{{\sin C}} = \frac{9}{{\sin 32^\circ }} \approx 16,98.\)

\(AC = AB \cdot \cot C = 9 \cdot \cot 32^\circ \approx 14,40.\)

Vậy \[AC \approx 14,40\]\[BC \approx 16,98.\]

2. Xét \(\Delta ABC\) vuông tại \(A,\) ta có:

\(BC = AC \cdot \cos C\), suy ra \(AC = \frac{{BC}}{{\cos C}} = \frac{{1,3}}{{\cos 66^\circ }} \approx 3,20\) (m).

Xét \(\Delta ABC\) vuông tại \(A,\) ta có: \(AB = BC \cdot \tan C = 1,3 \cdot \tan 66^\circ \approx 2,92\) (m).

Khi đầu \(A\) của thang bị trượt xuống \(40{\rm{\;cm}} = 0,4{\rm{\;m}}\) đến vị trí \(D\) thì \(DB = AB - AD \approx 2,92 - 0,4 = 2,52\) (m) và chiều dài thang là \(DE = AC \approx 3,20\) (m).

Xét \(\Delta BDE\) vuông tại \(B,\) ta có:

\(\sin \widehat {DEB} = \frac{{BD}}{{DE}} \approx \frac{{2,52}}{{3,2}} = 0,7875\), suy ra \(\widehat {DEB} \approx 51^\circ 57'.\)

Lời giải

Hướng dẫn giải

(0,5 điểm) Cho góc   α   thỏa mãn   0 ∘ < α < 90 ∘ .   Chứng minh rằng:  sin α + cos α − 1 1 − cos α = 2 cos α sin α − cos α + 1 . (ảnh 1)

Xét \(\Delta ABC\) vuông tại \(A\) có \(\widehat {B\,} = \alpha \).

Do \(\widehat {B\,}\) là góc nhọn nên \(0^\circ < \widehat {B\,} < 90^\circ \) hay \[0^\circ < \alpha < 90^\circ .\]

Ta có: \(\sin \alpha = \frac{{AC}}{{BC}}\) và \(\cos \alpha = \frac{{AB}}{{BC}}.\)

\(B{C^2} = A{B^2} + A{C^2}\) (định lí Pythagore).

Khi đó: \[{\sin ^2}\alpha + {\cos ^2}\alpha = {\left( {\frac{{AC}}{{BC}}} \right)^2} + {\left( {\frac{{AB}}{{BC}}} \right)^2} = \frac{{A{C^2}}}{{B{C^2}}} + \frac{{A{B^2}}}{{B{C^2}}} = \frac{{A{C^2} + A{B^2}}}{{B{C^2}}} = \frac{{B{C^2}}}{{B{C^2}}} = 1.\]

Với \[0^\circ < \alpha < 90^\circ \] thì \[1 - \cos \alpha \ne 0\] và \[\sin \alpha - \cos \alpha + 1 \ne 0\].

Ta có: \[\frac{{\sin \alpha + \cos \alpha - 1}}{{1 - \cos \alpha }} - \frac{{2\cos \alpha }}{{\sin \alpha - \cos \alpha + 1}}\]

\[ = \frac{{\left( {\sin \alpha + \cos \alpha - 1} \right)\left( {\sin \alpha - \cos \alpha + 1} \right) - 2\cos \alpha \left( {1 - \cos \alpha } \right)}}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]

\[ = \frac{{\left[ {\sin \alpha + \left( {\cos \alpha - 1} \right)} \right]\left[ {\sin \alpha - \left( {\cos \alpha - 1} \right)} \right] - 2\cos \alpha \left( {1 - \cos \alpha } \right)}}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]

\[ = \frac{{{{\sin }^2}\alpha - {{\left( {\cos \alpha - 1} \right)}^2} - 2\cos \alpha + 2{{\cos }^2}\alpha }}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]

\[ = \frac{{{{\sin }^2}\alpha - \left( {{{\cos }^2}\alpha - 2\cos \alpha + 1} \right) - 2\cos \alpha + 2{{\cos }^2}\alpha }}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]

\[ = \frac{{{{\sin }^2}\alpha - {{\cos }^2}\alpha + 2\cos \alpha - 1 - 2\cos \alpha + 2{{\cos }^2}\alpha }}{{\left( {1 - \cos \alpha } \right)\left( {\sin \alpha - \cos \alpha + 1} \right)}}\]

\[ = \frac{{{{\sin }^2}x + {{\cos }^2}x - 1}}{{\left( {1 - \cos x} \right)\left( {\sin x - \cos x + 1} \right)}}.\]

\[ = \frac{{1 - 1}}{{\left( {1 - \cos x} \right)\left( {\sin x - \cos x + 1} \right)}} = 0\] (vì \[1 - \cos x \ne 0\] và \[\sin x - \cos x + 1 \ne 0)\]

Vậy \[\frac{{\sin x + \cos x - 1}}{{1 - \cos x}} = \frac{{2\cos x}}{{\sin x - \cos x + 1}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP