Câu hỏi:

05/07/2025 147 Lưu

(2,0 điểm) Giải các phương trình và bất phương trình sau:

a) \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0.\)

b) \(\frac{3}{{x + 1}} - \frac{2}{{x - 2}} = \frac{{4x - 2}}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\);

c) \[3\left( {x + 2} \right) \le x - 8\];

d) \(3\left( {x + 1} \right) + 2x\left( {x - 1} \right) < 2{x^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) \(\left( {\frac{2}{3}x + 6} \right)\left( {8 - 2x} \right) = 0\)

\(\frac{2}{3}x + 6 = 0\) hoặc \(8 - 2x = 0\)

\(\frac{2}{3}x = - 6\) hoặc \(2x = 8\)

\(x = - 9\) hoặc \(x = 4\)

Vậy phương trình đã cho có hai nghiệm là \(x = - 9;\) \(x = 4\).

b) \(\frac{3}{{x + 1}} - \frac{2}{{x - 2}} = \frac{{4x - 2}}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)

Điều kiện xác định \(x + 1 \ne 0\) và \(x - 2 \ne 0\) hay \(x \ne - 1\) và \(x \ne 2\).

Quy đồng mẫu hai vế của phương trình, ta được

\(\frac{{3\left( {x - 2} \right) - 2\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 2} \right)}} = \frac{{4x - 2}}{{\left( {x + 1} \right)\left( {x - 2} \right)}}\)

Suy ra \(3\left( {x - 2} \right) - 2\left( {x + 1} \right) = 4x - 2\)

\(3x - 6 - 2x - 2 = 4x - 2\)

\[x - 8 = 4x - 2\]

\[3x = - 6\]

\[x = - 2\].

Giá trị \[x = - 2\] thỏa mãn ĐKXĐ. Vậy nghiệm của phương trình là \[x = - 2\].

c) \[3\left( {x + 2} \right) \le x - 8\]

Ta có: \[3\left( {x + 2} \right) \le x - 8\]

\[3x + 6 \le x - 8\]

\[3x - x \le - 8 - 6\]

\[2x \le \; - 14\]

\[x \le - 7\].

Vậy nghiệm của bất phương trình là \(x \le - 7.\)

d) \(3\left( {x + 1} \right) + 2x\left( {x - 1} \right) < 2{x^2}\)

Ta có: \(3\left( {x + 1} \right) + 2x\left( {x - 1} \right) < 2{x^2}\)

\(3x + 3 + 2{x^2} - 2x < 2{x^2}\)

\(x + 3 + 2{x^2} - 2{x^2} < 0\)

\(x + 3 < 0\)

\(x < - 3\).

Vậy nghiệm của bất phương trình là \(x < - 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \(A = \sin 35^\circ + \sin 67^\circ - \cos 23^\circ - \cos 55^\circ \)

\( = \sin 35^\circ + \sin 67^\circ - \sin \left( {90^\circ - 23^\circ } \right) - \sin \left( {90^\circ - 55^\circ } \right)\)

\( = \sin 35^\circ + \sin 67^\circ - \sin 67^\circ - \sin 35^\circ = 0.\)

Vậy \(A = 0.\)

b) \(B = \frac{{\sin 10^\circ }}{{\cos 80^\circ }} - \frac{{\cos 20^\circ }}{{\sin 70^\circ }} + \frac{{\tan 15^\circ }}{{\cot 75^\circ }}\)

\( = \frac{{\sin 10^\circ }}{{\sin 10^\circ }} - \frac{{\cos 20^\circ }}{{\cos 20^\circ }} + \frac{{\tan 15^\circ }}{{\tan 15^\circ }}\)

\( = 1 - 1 + 1 = 1.\)

Lời giải

Đáp án đúng là: B

Phát biểu “\(a\) không nhỏ hơn \(b\)” tức là “\(a\) lớn hơn hoặc bằng \(b\)” được biểu diễn như sau: \(a \ge b.\)

Vậy chọn đáp án B.

Câu 4

A. \(\sin \alpha = \sin \beta \).

B. \(\cos \alpha = \cos \beta \).

C. \(\tan \alpha = \cot \beta \).

D. \(\tan \alpha = \tan \beta \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[2{x^2} + 2 = 0\].

B. \[3y - 1 = 5y\left( {y - 2} \right)\].

C. \(2x + \frac{y}{2} - 1 = 0.\)

D. \[\frac{3}{x} + y = 0.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\left( { - 3\,;\,\,2} \right)\].

B. \[\left( {3\,;\,\,2} \right)\].

C. \[\left( {3\,;\,\, - 2} \right)\].

D. \[\left( { - 3\,;\,\, - 2} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP