(1,0 điểm) Rút gọn các biểu thức sau:
a) \(A = \sin 35^\circ + \sin 67^\circ - \cos 23^\circ - \cos 55^\circ .\)
b) \(B = \frac{{\sin 10^\circ }}{{\cos 80^\circ }} - \frac{{\cos 20^\circ }}{{\sin 70^\circ }} + \frac{{\tan 15^\circ }}{{\cot 75^\circ }}.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) \(A = \sin 35^\circ + \sin 67^\circ - \cos 23^\circ - \cos 55^\circ \) \( = \sin 35^\circ + \sin 67^\circ - \sin \left( {90^\circ - 23^\circ } \right) - \sin \left( {90^\circ - 55^\circ } \right)\) \( = \sin 35^\circ + \sin 67^\circ - \sin 67^\circ - \sin 35^\circ = 0.\) Vậy \(A = 0.\) |
b) \(B = \frac{{\sin 10^\circ }}{{\cos 80^\circ }} - \frac{{\cos 20^\circ }}{{\sin 70^\circ }} + \frac{{\tan 15^\circ }}{{\cot 75^\circ }}\) \( = \frac{{\sin 10^\circ }}{{\sin 10^\circ }} - \frac{{\cos 20^\circ }}{{\cos 20^\circ }} + \frac{{\tan 15^\circ }}{{\tan 15^\circ }}\) \( = 1 - 1 + 1 = 1.\) |
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(a < b.\)
B. \(a \ge b.\)
C. \(a \le b.\)
D. \(a > b.\)
Lời giải
Đáp án đúng là: B
Phát biểu “\(a\) không nhỏ hơn \(b\)” tức là “\(a\) lớn hơn hoặc bằng \(b\)” được biểu diễn như sau: \(a \ge b.\)
Vậy chọn đáp án B.
Lời giải
Hướng dẫn giải
a) Kẻ \(CH \bot AB,\,\,H \in AB.\) Khi đó \(CH\) là chiều cao của con dốc.

⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CAH} = \frac{{CH}}{{AH}}\)
Suy ra \(AH = \frac{{CH}}{{{\rm{tan}}\widehat {CAH}}} = \frac{{CH}}{{{\rm{tan6}}^\circ }}\,\,({\rm{m}}).\) (1)
⦁ Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{tan}}\widehat {CBH} = \frac{{CH}}{{BH}}\)
Suy ra \(BH = \frac{{CH}}{{{\rm{tan}}\widehat {CBH}}} = \frac{{CH}}{{{\rm{tan4}}^\circ }}\,\,({\rm{m}}).\) (2)
⦁ Từ (1) và (2) ta có: \(AH + BH = \frac{{CH}}{{{\rm{tan6}}^\circ }} + \frac{{CH}}{{{\rm{tan4}}^\circ }}\) hay \(AB = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)
Do đó \(762 = CH \cdot \left( {\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}} \right)\)
Suy ra \(CH = \frac{{762}}{{\frac{1}{{{\rm{tan6}}^\circ }} + \frac{1}{{{\rm{tan4}}^\circ }}}} \approx 32{\rm{\;(m)}}{\rm{.}}\)
Vậy chiều cao của con dốc là 32 m.
b) ⦁ Xét \(\Delta ACH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CAH} = \frac{{CH}}{{AC}}\)
Suy ra \(AC = \frac{{CH}}{{{\rm{sin}}\widehat {CAH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin6}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin6}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (3)
Xét \(\Delta BCH\) vuông tại \[H,\] ta có: \({\rm{sin}}\widehat {CBH} = \frac{{CH}}{{CB}}\)
Suy ra \(CB = \frac{{CH}}{{{\rm{sin}}\widehat {CBH}}} \approx \frac{{{\rm{32}}}}{{{\rm{sin4}}^\circ }}{\rm{\;(m)}} = \frac{4}{{125{\rm{sin4}}^\circ }}{\rm{\;(km)}}{\rm{.}}\) (4)
⦁ Thời gian lên dốc \[AC\] là: \[{t_{AC}} = \frac{{{S_{AC}}}}{{{v_{ld}}}} = \frac{{AC}}{{{v_{ld}}}} \approx \frac{4}{{125{\rm{sin6}}^\circ }}:4 = \frac{1}{{125{\rm{sin6}}^\circ }}\] (giờ).
Thời gian xuống dốc \(CB\) là: \[{t_{CB}} = \frac{{{S_{CB}}}}{{{v_{xd}}}} = \frac{{CB}}{{{v_{xd}}}} \approx \frac{4}{{125{\rm{sin4}}^\circ }}:19 = \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }}\] (giờ).
Thời gian đi từ \(A\) đến \(B\) là:
\({t_{AB}} = {t_{AC}} + {t_{CB}} \approx \frac{1}{{125\sin 6^\circ }} + \frac{4}{{{\rm{2}}\,\,{\rm{375sin4}}^\circ }} \approx 0,1007\) (giờ) ≈ 6 phút.
Vậy bạn An đến trường lúc 6 giờ + 6 phút = 6 giờ 6 phút.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\sin \alpha = \sin \beta \).
B. \(\cos \alpha = \cos \beta \).
C. \(\tan \alpha = \cot \beta \).
D. \(\tan \alpha = \tan \beta \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[2{x^2} + 2 = 0\].
B. \[3y - 1 = 5y\left( {y - 2} \right)\].
C. \(2x + \frac{y}{2} - 1 = 0.\)
D. \[\frac{3}{x} + y = 0.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\left( { - 3\,;\,\,2} \right)\].
B. \[\left( {3\,;\,\,2} \right)\].
C. \[\left( {3\,;\,\, - 2} \right)\].
D. \[\left( { - 3\,;\,\, - 2} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

