Câu hỏi:

05/07/2025 10

Hệ phương trình nào có cùng cặp nghiệm với hệ phương trình \[\left\{ \begin{array}{l}5x + 4y = 1\\3x - 2y = 5\end{array} \right.\] ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải phương trình \[\left\{ \begin{array}{l}5x + 4y = 1\\3x - 2y = 5\end{array} \right.\], ta có:

Từ phương trình thứ nhất ta có \[4y = 1 - 5x\] hay \[y = \frac{1}{4} - \frac{5}{4}x\].

Thế vào phương trình thứ hai, ta được

\[3x - 2\left( {\frac{1}{4} - \frac{5}{4}x} \right) = 5\], tức là \[\frac{{11}}{2}x - \frac{1}{2} = 4\], suy ra \[\frac{{11}}{2}x = \frac{{11}}{2}\] hay \[x = 1\].

Từ đó \[y = \frac{1}{4} - \frac{5}{4}.1 = - 1.\]

Do đó, hệ phương trình đã cho có nghiệm là \[\left( {1\,;\,\, - 1} \right).\]

Thay \(x = 1;y = - 1\) vào các đáp đáp án, ta được:

Đáp án A có \(\left\{ \begin{array}{l}3.1 + 2.\left( { - 1} \right) = 1\\1 + \left( { - 1} \right) = 0\end{array} \right.\) .

Do đó \[\left( {1\,;\,\, - 1} \right)\] cũng là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 2y = 1\\x + y = 0\end{array} \right..\]

Đáp án B có \[\left\{ \begin{array}{l}3.1 + 2.\left( { - 1} \right) = 1\\1 - \left( { - 1} \right) = 2 \ne 0\end{array} \right.\].

Do đó \[\left( {1\,;\,\, - 1} \right)\] không là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 2y = 1\\x - y = 0\end{array} \right..\]

Đáp án C có \[\left\{ \begin{array}{l}3.1 - 2.\left( { - 1} \right) = 5 \ne 1\\1 + \left( { - 1} \right) = 0\end{array} \right.\].

Do đó \[\left( {1\,;\,\, - 1} \right)\] không là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x - 2y = 1\\x + y = 0\end{array} \right..\]

Đáp án D có \[\left\{ \begin{array}{l}3.1 - 2.\left( { - 1} \right) = 5 \ne 1\\1 - \left( { - 1} \right) = 2 \ne 0\end{array} \right..\]

Do đó \[\left( {1\,;\,\, - 1} \right)\] không là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x - 2y = 1\\x - y = 0\end{array} \right..\]

Vậy chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) \(9{x^2}\left( {2x - 3} \right) = 0\)

\(9{x^2} = 0\) hoặc \(2x - 3 = 0\)

\({x^2} = 0\) hoặc \(2x = 3\)

\(x = 0\) hoặc \(x = \frac{3}{2}\).

Vậy phương trình đã cho có hai nghệm là \(x = 0;\) \(x = \frac{3}{2}\).

b) Điều kiện xác định \(x \ne - 1,\,\,x \ne 0\).

\(\frac{{2x + 1}}{{x + 1}} + \frac{2}{x} = \frac{2}{{x\left( {x + 1} \right)}}\)

\(\frac{{\left( {2x + 1} \right)x}}{{x\left( {x + 1} \right)}} + \frac{{2\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}} = \frac{2}{{x\left( {x + 1} \right)}}\)

\(\left( {2x + 1} \right)x + 2\left( {x + 1} \right) = 2\)

\(2{x^2} + x + 2x + 2 = 2\)

\(2{x^2} + 3x = 0\)

\(x\left( {2x + 3} \right) = 0\)

\(x = 0\) hoặc \(2x + 3 = 0\)

\(x = 0\) (không thỏa mãn) hoặc \(x = - \frac{3}{2}\) (thỏa mãn).

Vậy nghiệm của phương trình đã cho là \(x = - \frac{3}{2}\).

c) Ta có: \[4x + 1 < 2x - 9\]

\[4x - 2x < - 9 - 1\]

\[2x < \; - 10\]

\[x < - 5\].

Vậy nghiệm của bất phương trình là \(x < - 5.\) d) \(3\left( {x - 2} \right) + 7x \le 4\left( {x + 1} \right) + 14\)

Ta có: \(3x - 6 + 7x \le 4x + 4 + 14\)

\(10x - 6 \le 4x + 18\)

\(10x - 4x \le 18 + 6\)

\(6x \le 24\)

\(x \le 4\).

Vậy nghiệm của bất phương trình là \(x \le 4\).

</></></></></>

Lời giải

Hướng dẫn giải

a) \(B = \cot 20^\circ \cdot \cot 40^\circ \cdot \cot 50^\circ \cdot \cot 70^\circ \)

\( = \cot 20^\circ \cdot \cot 40^\circ \cdot \tan \left( {90^\circ - 50^\circ } \right) \cdot \tan \left( {90^\circ - 70^\circ } \right)\)

\( = \cot 20^\circ \cdot \cot 40^\circ \cdot \tan 40^\circ \cdot \tan 20^\circ \)

\( = \left( {\cot 20^\circ \cdot \tan 20^\circ } \right) \cdot \left( {\cot 40^\circ \cdot \tan 40^\circ } \right)\)

\( = 1 \cdot 1 = 1.\)

Vậy \(B = 1.\)

b) \(A = \cos 40^\circ - \sin 50^\circ + \tan 20^\circ \cot 20^\circ \)

\( = \cos 40^\circ - \cos 40^\circ + 1\)

\( = 0 + 1 = 1.\)

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP