Hệ phương trình nào có cùng cặp nghiệm với hệ phương trình \[\left\{ \begin{array}{l}5x + 4y = 1\\3x - 2y = 5\end{array} \right.\] ?
A. \[\left\{ \begin{array}{l}3x + 2y = 1\\x + y = 0\end{array} \right.\].
B. \[\left\{ \begin{array}{l}3x + 2y = 1\\x - y = 0\end{array} \right.\].
C. \[\left\{ \begin{array}{l}3x - 2y = 1\\x + y = 0\end{array} \right.\].
D. \[\left\{ \begin{array}{l}3x - 2y = 1\\x - y = 0\end{array} \right..\]
Quảng cáo
Trả lời:
Giải phương trình \[\left\{ \begin{array}{l}5x + 4y = 1\\3x - 2y = 5\end{array} \right.\], ta có:
Từ phương trình thứ nhất ta có \[4y = 1 - 5x\] hay \[y = \frac{1}{4} - \frac{5}{4}x\].
Thế vào phương trình thứ hai, ta được
\[3x - 2\left( {\frac{1}{4} - \frac{5}{4}x} \right) = 5\], tức là \[\frac{{11}}{2}x - \frac{1}{2} = 4\], suy ra \[\frac{{11}}{2}x = \frac{{11}}{2}\] hay \[x = 1\].
Từ đó \[y = \frac{1}{4} - \frac{5}{4}.1 = - 1.\]
Do đó, hệ phương trình đã cho có nghiệm là \[\left( {1\,;\,\, - 1} \right).\]
Thay \(x = 1;y = - 1\) vào các đáp đáp án, ta được:
Đáp án A có \(\left\{ \begin{array}{l}3.1 + 2.\left( { - 1} \right) = 1\\1 + \left( { - 1} \right) = 0\end{array} \right.\) .
Do đó \[\left( {1\,;\,\, - 1} \right)\] cũng là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 2y = 1\\x + y = 0\end{array} \right..\]
Đáp án B có \[\left\{ \begin{array}{l}3.1 + 2.\left( { - 1} \right) = 1\\1 - \left( { - 1} \right) = 2 \ne 0\end{array} \right.\].
Do đó \[\left( {1\,;\,\, - 1} \right)\] không là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x + 2y = 1\\x - y = 0\end{array} \right..\]
Đáp án C có \[\left\{ \begin{array}{l}3.1 - 2.\left( { - 1} \right) = 5 \ne 1\\1 + \left( { - 1} \right) = 0\end{array} \right.\].
Do đó \[\left( {1\,;\,\, - 1} \right)\] không là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x - 2y = 1\\x + y = 0\end{array} \right..\]
Đáp án D có \[\left\{ \begin{array}{l}3.1 - 2.\left( { - 1} \right) = 5 \ne 1\\1 - \left( { - 1} \right) = 2 \ne 0\end{array} \right..\]
Do đó \[\left( {1\,;\,\, - 1} \right)\] không là nghiệm của hệ phương trình \[\left\{ \begin{array}{l}3x - 2y = 1\\x - y = 0\end{array} \right..\]
Vậy chọn đáp án A.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) \(B = \cot 20^\circ \cdot \cot 40^\circ \cdot \cot 50^\circ \cdot \cot 70^\circ \)
\( = \cot 20^\circ \cdot \cot 40^\circ \cdot \tan \left( {90^\circ - 50^\circ } \right) \cdot \tan \left( {90^\circ - 70^\circ } \right)\)
\( = \cot 20^\circ \cdot \cot 40^\circ \cdot \tan 40^\circ \cdot \tan 20^\circ \)
\( = \left( {\cot 20^\circ \cdot \tan 20^\circ } \right) \cdot \left( {\cot 40^\circ \cdot \tan 40^\circ } \right)\)
\( = 1 \cdot 1 = 1.\)
Vậy \(B = 1.\)
b) \(A = \cos 40^\circ - \sin 50^\circ + \tan 20^\circ \cot 20^\circ \)
\( = \cos 40^\circ - \cos 40^\circ + 1\)
\( = 0 + 1 = 1.\)
Lời giải
Hướng dẫn giải
Đổi \(1,221{\rm{\;km}} = 1\,\,221{\rm{\;m}}.\)
a) Do \[Bx\,{\rm{//}}\,AC\;\] nên \[\widehat {ACB} = \widehat {CBx}\] (so le trong).
Vì \(\Delta ABC\) vuông tại \[A\] nên \(AB = AC \cdot {\rm{tan}}\widehat {ACB} = 1\,\,221 \cdot {\rm{tan}}25^\circ \approx 569{\rm{\;(m)}}{\rm{.}}\)
Vậy chiều cao của đài quan sát khoảng: \[3 + 569 = 572\] (m).
b) Đổi: \[60\] km/h \[ = 1{\rm{ }}000\] m/phút.
Do \[Bx\,{\rm{//}}\,AC\;\] và \[AB \bot AC\] nên ta có \(\widehat {ABx} = \widehat {BAC} = 90^\circ .\)
Quãng đường \[CD\] là: \[CD = 1{\rm{ }}000 \cdot 1 = 1{\rm{ }}000\] (m).
Do đó: \[AD = AC - CD = 1{\rm{ }}221\; - 1{\rm{ }}000 = 221\] (m).
Xét \(\Delta ABD\) vuông tại \[A\] có: \({\rm{tan}}\widehat {ABD} = \frac{{AD}}{{AB}} \approx \frac{{221}}{{569}}.\) Suy ra \(\widehat {ABD} \approx 21^\circ 14'.\)
Mà \(\widehat {DBx} + \widehat {ABD} = \widehat {ABx} = 90^\circ .\)
Suy ra \(\alpha = \widehat {DBx} = 90^\circ - \widehat {ABD} \approx 90^\circ - 21^\circ 14' = 68^\circ 46'.\)
c) Vì \(\Delta ABD\) vuông tại \[A\] nên \(AB = BD \cdot {\rm{cos}}\widehat {ABD}.\)
Suy ra \(BD = \frac{{AB}}{{{\rm{cos}}\widehat {ABD}}} \approx \frac{{569}}{{{\rm{cos}}\,21^\circ 14'}} \approx 610{\rm{\;(m)}}{\rm{.}}\)
Vậy khoảng cách từ mắt người quan sát đến vị trí \[D\] khoảng \[610\] mét.
Câu 3
A. \[\left( {x - 5} \right) + \left( {2y - 6} \right) = 0\].
B. \[5x - 3z = 6\].
C. \(5x - 8y = 0.\)
D. \[\left( {x - 2} \right)\left( {2y - 3} \right) = 3.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[x \ne 4;{\rm{ }}x \ne - 3\].
B. \[x \ne 3;{\rm{ }}x \ne - 4\].
C. \[x \ne 3;{\rm{ }}x \ne 6\].
D. \[x \ne 0;{\rm{ }}x \ne - 3\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
