Câu hỏi:
07/07/2025 17
Một lớp có 40 học sinh trong đó 18 học sinh biết bơi, 15 học sinh biết võ và 10 học sinh biết bơi và võ. Chọn ngẫu nhiên một học sinh. Tính xác suất của biến cố học sinh được chọn không biết bơi và võ (kết quả làm tròn đến hàng phần trăm).
Một lớp có 40 học sinh trong đó 18 học sinh biết bơi, 15 học sinh biết võ và 10 học sinh biết bơi và võ. Chọn ngẫu nhiên một học sinh. Tính xác suất của biến cố học sinh được chọn không biết bơi và võ (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Gọi A là biến cố “Học sinh đó biết bơi”; B là biến cố “Học sinh đó biết võ”;
AB là biến cố “Học sinh đó biết bơi và võ”; A È B là biến cố “Học sinh đó biết bơi hoặc võ”.
Theo đề có \(P\left( A \right) = \frac{{18}}{{40}};P\left( B \right) = \frac{{15}}{{40}};P\left( {AB} \right) = \frac{{10}}{{40}}\).
Khi đó \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{18}}{{40}} + \frac{{15}}{{40}} - \frac{{10}}{{40}} = \frac{{23}}{{40}}\).
Xác suất để học sinh được chọn không biết bơi và võ là \(1 - \frac{{23}}{{40}} = \frac{{17}}{{40}} \approx 0,43\).
Trả lời: 0,43.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố “Lần gieo đầu tiên xuất hiện mặt chấm chẵn” \( \Rightarrow P\left( A \right) = P\left( {\overline A } \right) = \frac{1}{2}\).
B là biến cố “Lần gieo thứ hai xuất hiện mặt chấm chẵn” \( \Rightarrow P\left( B \right) = P\left( {\overline B } \right) = \frac{1}{2}\).
C là biến cố “Tổng số chấm trong hai lần gieo là số chẵn”.
Suy ra \(C = AB \cup \overline A \overline B \).
Khi đó \(P\left( C \right) = P\left( {AB} \right) \cup P\left( {\overline A \overline B } \right)\)\( = P\left( A \right).P\left( B \right) + P\left( {\overline A } \right).P\left( {\overline B } \right)\)\( = \frac{1}{2}.\frac{1}{2} + \frac{1}{2}.\frac{1}{2} = \frac{1}{2} = 0,5\).
Trả lời: 0,5.
Lời giải
a) A = {2; 4; 6; 8; 10; 12; 14; 16; 18; 20} \( \Rightarrow P\left( A \right) = \frac{{10}}{{20}} = \frac{1}{2}\).
b) B = {3; 6; 9; 12; 15; 18} \( \Rightarrow P\left( B \right) = \frac{6}{{20}} = \frac{3}{{10}}\).
c) AB = {6; 12; 18} \( \Rightarrow P\left( {AB} \right) = \frac{3}{{20}}\).
d) \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{2} + \frac{3}{{10}} - \frac{3}{{20}} = \frac{{13}}{{20}}\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.