Hai xạ thủ bắn súng có xác suất bắn trúng đích lần lượt là 0,6 và 0,5. Mỗi xạ thủ bắn một phát. Tính xác suất để cả hai xạ thủ bắn trượt đích?
Quảng cáo
Trả lời:

C
Xác suất để cả hai xạ thủ bắn trượt đích là P = 0,4.0,5 = 0,2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố “Lần gieo đầu tiên xuất hiện mặt chấm chẵn” \( \Rightarrow P\left( A \right) = P\left( {\overline A } \right) = \frac{1}{2}\).
B là biến cố “Lần gieo thứ hai xuất hiện mặt chấm chẵn” \( \Rightarrow P\left( B \right) = P\left( {\overline B } \right) = \frac{1}{2}\).
C là biến cố “Tổng số chấm trong hai lần gieo là số chẵn”.
Suy ra \(C = AB \cup \overline A \overline B \).
Khi đó \(P\left( C \right) = P\left( {AB} \right) \cup P\left( {\overline A \overline B } \right)\)\( = P\left( A \right).P\left( B \right) + P\left( {\overline A } \right).P\left( {\overline B } \right)\)\( = \frac{1}{2}.\frac{1}{2} + \frac{1}{2}.\frac{1}{2} = \frac{1}{2} = 0,5\).
Trả lời: 0,5.
Lời giải
C
Nhận thấy A và B là hai biến cố xung khắc nên P(A È B) = P(A) + P(B)
\( = \frac{{C_{12}^5}}{{C_{22}^5}} + \frac{{C_{10}^5}}{{C_{22}^5}} = \frac{{58}}{{1463}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.