Trong một cuộc khảo sát về các môn học yêu thích đối với 40 học sinh lớp 11A. Kết quả 25 học sinh thích môn Lý, 20 học sinh thích môn Hóa và 14 học sinh thích cả Lý và Hóa. Chọn ngẫu nhiên một học sinh. Xác suất để chọn được học sinh thích môn Lý hoặc môn Hóa là
Quảng cáo
Trả lời:

A
Gọi A là biến cố “Học sinh đó thích môn Lý”; B là biến cố “Học sinh đó thích môn Hóa”;
AB là biến cố “Học sinh đó thích cả Lý và Hóa”.
Theo đề ta có \(P\left( A \right) = \frac{{25}}{{40}};P\left( B \right) = \frac{{20}}{{40}};P\left( {AB} \right) = \frac{{14}}{{40}}\).
Khi đó \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{{25}}{{40}} + \frac{{20}}{{40}} - \frac{{14}}{{40}} = \frac{{31}}{{40}}\) = 0,775.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
C
Gọi A là biến cố “Lấy được 2 quả cầu màu trắng”;
B là biến cố “Lấy được hai quả màu đen”;
C là biến cố “Lấy được 2 quả cùng màu”.
Khi đó C = A È B.
Mà A, B là hai biến cố xung khắc nên P(C) = P(A) + P(B) \( = \frac{{C_8^2}}{{C_{13}^2}} + \frac{{C_5^2}}{{C_{13}^2}} = \frac{{19}}{{39}}\).
Lời giải
C
Nhận thấy A và B là hai biến cố xung khắc nên P(A È B) = P(A) + P(B)
\( = \frac{{C_{12}^5}}{{C_{22}^5}} + \frac{{C_{10}^5}}{{C_{22}^5}} = \frac{{58}}{{1463}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.