Câu hỏi:

13/07/2024 31,840

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM = CN.

Chứng minh rằng tam giác AMN là tam giác cân

Câu hỏi trong đề:   Giải toán 7 Chương 2: Tam giác !!

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

ΔABC cân tại A suy ra Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Ta lại có :

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

- ΔABM và ΔACN có

      AB = AC (Do ΔABC cân tại A).

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

      BM = CN(gt)

⇒ ΔABM = ΔACN (c.g.c)

⇒ AM = AN (hai cạnh tương ứng) ⇒ ΔAMN cân tại A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Câu Đúng Sai
1. Trong một tam giác, góc nhỏ nhất là góc nhọn    
2. Trong một tam giác có ít nhất là hai góc nhọn    
3. Trong một tam giác góc lớn nhất là góc tù    
4. Trong một tam giác vuông , hai góc nhọn bù nhau    
5. Nếu góc A là góc ở đáy của một tam giác cân thì góc A < 90o    
6. Nếu góc A là góc ở đỉnh của một tam giác cân thì góc A < 90o

Xem đáp án » 13/07/2024 10,118

Câu 2:

Đố. Trên hình 152, một cầu trượt có đường lên BA dài 5m, độ cao AH = 3m, độ dài BC = 10m, CD = 2m. Bạn Mai nói rằng đường trượt tổng cộng ACD gập hơn hai lần đường lên BA. Bạn Vân nói rằng điều đó không đúng ? Ai đúng ai sai.

Giải bài 73 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Xem đáp án » 13/07/2024 5,833

Câu 3:

Cho điểm A nằm ngoài đường thẳng a. Vẽ cung tròn tâm A cắt đường thẳng a ở B và C. Vẽ các cung tròn tâm B và tâm C có cùng bán kính sao cho chúng cắt nhau tại một điểm khác A, gọi điểm đó là D. Hãy giải thích vì sao AD vuông góc với đường thẳng a.

Xem đáp án » 13/07/2024 5,435

Câu 4:

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM = CN

Khi góc BAC = 60o và BM = CN = BC hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC

Xem đáp án » 13/07/2024 3,931

Câu 5:

Phát biểu định nghĩa tam giác đều, tính chất về góc của tam giác đều. Nêu các cách chứng minh một tam giác là tam giác đều.

Xem đáp án » 13/07/2024 3,439

Câu 6:

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM = CN.

Kẻ BH ⊥ AM, kẻ CK ⊥ AN. Chứng minh rằng BH = CK

Xem đáp án » 13/07/2024 2,720

Bình luận


Bình luận

Vinguoidanongmanhme
22:22 - 28/05/2024

Bài 4. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM = CN

a) Chứng minh tam giác AMN cân;

b) Kẻ BH vuong goc vs AM (H thuoc AM) kẻ CK vuong goc vs AN (K thuoc AN). Chứng minh tam giac BHM = tam giac CKN

c) Các đường thằng HB và KC cắt nhau tại O. Tam giác OBC là tam giác gì? Tại sao?

d) Khi goc BAC = 60⁰ và BM = CN = BC tính số đo các góc của tam giác AMN và xác định dạng của tam giác OВС.

e) Kẻ AD vuong goc vs BC (D thuoc BC) biết rằng AB = 10cm BC = 16cm Tính độ dài AD.

Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store