Câu hỏi:

09/07/2025 443 Lưu

Trong hình thang cân, phát biểu nào sau đây là sai?

A. Hai cạnh bên bằng nhau.

B. Bốn cạnh bằng nhau.

C. Hai đường chéo bằng nhau.

D. Hai cạnh đáy song với với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Hình thang cân có hai cạnh đáy song với với nhau, hai đường chéo bằng nhau và hai cạnh bên bằng nhau.

Hình thang cân không có bốn cạnh bằng nhau.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Số quyển vở được chia đều vào các phần thưởng là: \(133 - 13 = 120\) (quyển vở).

Số bút bi được chia đều vào các phần thưởng là: \(80 - 8 = 72\) (bút bi).

Số tập giấy được chia đều vào các phần thưởng là: \(302 - 2 = 300\) (tập giấy).

Gọi số phần thưởng có thể chia được là \(x\) (phần thưởng) \(\left( {x \in {\mathbb{N}^*}} \right)\)

Vì 120 quyển vở, 72 bút bi và 300 tập giấy được chia đều thành các phần thưởng nên ta có

\(120\,\, \vdots \,\,x,\,\,72\,\, \vdots \,\,x,\,\,300\,\, \vdots \,\,x.\)

Vì cần chia sao cho số phần thưởng nhận được là nhiều nhất nên \(x = \)ƯCLN\(\left( {120,\,\,72,\,\,300} \right).\)

Ta có: \(120 = {2^3} \cdot 3 \cdot 5;\,\,\,\,\,\,\,\,72 = {2^3} \cdot {3^2};\,\,\,\,\,\,\,300 = {2^2} \cdot 3 \cdot {5^2}.\)

Suy ra \(x = \)ƯCLN\(\left( {120,\,\,72,\,\,300} \right) = {2^2} \cdot 3 = 12\) (thỏa mãn).

Vậy chia được nhiều nhất thành 12 phần thưởng.

Lời giải

Hướng dẫn giải

a) \[ - {4^2} + \left\{ { - 54:\left[ {{{\left( { - 2} \right)}^3} + 7 \cdot 2} \right]} \right\}\]

\( = - 16 + \left\{ { - 54:\left[ { - 8 + 14} \right]} \right\}\)

\( = - 16 + \left\{ { - 54:6} \right\}\)

\( = - 16 + \left( { - 9} \right)\)

\( = - 25.\)

b) \( - 79 \cdot 51 + 79 \cdot \left( { - 48} \right) - 79\)

\( = 79 \cdot \left( { - 51} \right) + 79 \cdot \left( { - 48} \right) - 79\)

\( = 79 \cdot \left[ {\left( { - 51} \right) + \left( { - 48} \right) - 1} \right]\)

\( = 79 \cdot \left[ { - 100} \right]\)

\( = - 7\,\,900.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP