Câu hỏi:

17/07/2025 10 Lưu

(1,0 điểm) Cho tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G.\] Gọi \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG.\]

a) Tứ giác \[EFHD\] là hình gì? Vì sao?

b) Tìm điều kiện của tam giác \[ABC\] để tứ giác \[EFHD\] là hình vuông.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G\] nên \[G\] là trọng tâm \[\Delta ABC,\] do đó \(DG = \frac{1}{2}BG,\) \(EG = \frac{1}{2}CG.\)

Mà \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG\] nên

\(BF = FG = \frac{1}{2}BG,\) \(CH = HG = \frac{1}{2}CG.\)

Do đó \[DG = BF = FG,{\rm{ }}EG = CH = HG.\]

(1,0 điểm) Cho tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G.\] Gọi \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG.\]a) Tứ giác \[EFHD\] là hình gì? (ảnh 1)

Suy ra,

\[G\] là trung điểm của \[FD,{\rm{ }}G\] là trung điểm của \[EH.\]

Tứ giác \[EFHD\] có hai đường chéo \[EH\] và \(FD\) cắt nhau tại trung điểm \[G\] của mỗi đường nên \[EFHD\] là hình bình hành.

b) Để hình bình hành \[EFHD\] là hình vuông thì \[EH = DF\] và \[EH \bot DF.\]

Suy ra \[EG = DG,{\rm{ }}BG = CG\] và \[BD \bot CE.\]

⦁ Xét \(\Delta BEG\) và \[\Delta CDG\] có:

\[BG = CG,\] \(\widehat {EGB} = \widehat {DGC}\) (đối đỉnh), \[EG = DG\]

Do đó \(\Delta BEG = \Delta CDG\) (c.g.c).

Suy ra \[BE = CD\] (hai cạnh tương ứng).\[\left( 1 \right)\]

Mà \[BD,{\rm{ }}CE\] là các đường trung tuyến của \(\Delta ABC\) nên \[E\] là trung điểm của \[AB,{\rm{ }}D\] là trung điểm của \[AC.\]

Suy ra \[AB = 2BE,{\rm{ }}AC = 2CD.\,\,\,\,\,\,\left( 2 \right)\]

Từ (1) và (2) suy ra \[AB = AC.\]

⦁ Dễ thấy, nếu \[AB = AC\] và \[BD \bot CE\] thì tứ giác \[EFHD\] là hình vuông.

Vậy tam giác \[ABC\] cân tại \[A\] có hai đường trung tuyến \[BD,CE\] vuông góc với nhau thì tứ giác \[EFHD\] là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Đối với khách hàng là hội viên, ta có hàm số: \[s = 5\,\,000t + 50\,\,000.\]

Đối với khách hàng không là hội viên, ta có hàm số: \[s = 10\,\,000t\].

b) Trung là hội viên nên số tiền Trung bỏ ra cho mỗi năm sẽ được tính theo công thức:

\[s = 5\,\,000t + 50\,\,000.\]

Thay \[s = 90\,\,000\] vào công thức \[s = 5\,\,000t + 50\,\,000\], ta được:

\[90\,\,000 = 5\,\,000t + 50\,\,000\] nên \(t = \frac{{90\,\,000 - 50\,\,000}}{{5\,\,000}} = 8\).

Do đó, năm ngoái Trung trả tổng cộng 90 000 đồng nên số sách Trung đã mượn là 8 cuốn.

Thay \[t = 8\] vào công thức \[s = 10\,\,000t\], ta được: \[s = 10\,\,000 \cdot 8 = 80\,\,000.\]

Vậy nếu không phải là hội viên thì số tiền Trung phải trả cho năm ngoái là \[80\,\,000\] đồng.

c) Khi là hội viên thì với mỗi cuốn sách mướn khách hàng sẽ tiết kiệm được \(5\,\,000\) đồng so với khách không phải là hội viên.

Để bù được phí hội viên thì số tiền tiết kiệm được khi mướn t cuốn sách phải lớn hơn hoặc bằng phí hội viên: \(5\,\,000t \ge 50\,\,000\) nên \(t \ge 10\).

Vậy cần phải mướn ít nhất 10 cuốn sách để có thể bù được phí hội viên

 

Lời giải

Hướng dẫn giải

Đáp án: a) Sai.b) Đúng.c) Đúng.d) Sai.

⦁ Giả sử \[AI\] cắt \[BC\] ở \[H\].

Ta có: \[\widehat {DAI} + \widehat {DAB} + \widehat {BAH} = 180^\circ \], mà \[\widehat {DAB} = 90^\circ \] (do \[\Delta DAB\] vuông cân tại \[A\]).

Suy ra \[\widehat {DAI} + \widehat {BAH} = 90^\circ \]. Do đó ý a) sai.

⦁ Ta có \[\widehat {DAI} = \widehat {ABC}\] (gt) nên \[\widehat {ABH} + \widehat {BAH} = 90^\circ \].

Trong \[\Delta ABH\] có: \[\widehat {ABH} + \widehat {BAH} + \widehat {AHB} = 180^\circ \].

Cho tam giác \[ABC\]. Dựng bên ngoài tam giác đó hai tam giác \[ABD,{\rm{ }}ACE\] vuông cân tại đỉnh \[A\] rồi dựng hình bình hành \[AEID\]. Biết \[\widehat {DAI} = \widehat {ABC}\]. Gọi \[K\ (ảnh 1)

Suy ra \[\widehat {AHB} = 180^\circ \left( {\widehat {ABH} + \widehat {BAH}} \right) = 180^\circ - 90^\circ = 90^\circ \] hay \[AI \bot BC\]. Do đó ý b) đúng.

⦁ Ta có \[\widehat {BAE} = \widehat {BAC} + \widehat {CAE} = \widehat {BAC} + 90^\circ \] và \[\widehat {DAC} = \widehat {BAC} + \widehat {BAD} = \widehat {BAC} + 90^\circ \].

Do đó \[\widehat {BAE} = \widehat {DAC}\].

Xét \[\Delta BAE\] và \[\Delta DAC\] có:

\[AB = AD;\,\,\widehat {BAE} = \widehat {DAC};\,\,AC = AE\].

Do đó \[\Delta BAE = \Delta DAC\] (c.g.c).

Suy ra \(\widehat {EBA} = \widehat {CDA}\) (hai góc tương ứng). Do đó ý c) đúng.

⦁ Tam giác \[ABD\] vuông cân tại \[A\] nên \[AK\] vừa là đường trung tuyến, vừa là đường cao, đường phân giác. Do đó \(\widehat {DAK} = \frac{1}{2}\widehat {BAD} = 45^\circ \).

Khi đó \(\widehat {ABK} = \widehat {BAK} = 45^\circ \) nên \[\Delta ABK\] vuông cân tại \[K\], do đó \[KA = KB\]. Do đó ý d) sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP