(1,0 điểm) Cho \(\Delta ABC\) cân tại \(A,\) đường trung tuyến \(AH.\) Gọi \(I\) và \(K\) lần lượt là trung điểm của \(AC\) và \(AB.\) Gọi \(E\) là điểm sao cho \(I\) là trung điểm của \(HE.\)
a) Giải thích tại sao tứ giác \(AKHI\) là hình thoi.
b) Chứng minh rằng \(AHCE\) là hình chữ nhật. Tam giác \(ABC\) cần thêm điều kiện gì để tứ giác \(AHCE\) là hình vuông?
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Xét
\(\Delta ABC\) cân tại \(A\) có \(AH\) là đường trung tuyến nên đồng thời là đường cao của tam giác.
Do đó \(AH \bot BC\) nên \(\Delta AHB\) và \(\Delta AHC\) đều vuông tại \(H.\)
Xét \(\Delta AHB\) vuông tại \(H\) có \(HK\) là đường trung tuyến ứng với cạnh huyền \(AB\) nên \(KH = \frac{1}{2}AB\) (tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông).
Tương tự, xét \(\Delta AHC\) vuông tại \(H\) ta có \(IH = \frac{1}{2}AC.\)
Mà \(I,\) \(K\) lần lượt là trung điểm của \(AC\) và \(AB\) nên \[KA = KB = \frac{1}{2}AB;\,\,IA = IC = \frac{1}{2}AC.\]
Lại có \(AB = AC\) (do \(\Delta ABC\) cân tại \(A)\) nên \(KA = KH = IA = IH.\)
Xét tứ giác \(AKHI\) có \(KA = KH = IA = IH\) nên là hình thoi.
b) Xét tứ giác \(AHCE\) có \(I\) là trung điểm của hai đường chéo \(AC,\,\,HE\) nên \(AHCE\) là hình bình hành.
Lại có \(\widehat {AHC} = 90^\circ \) nên hình bình hành \(AHCE\) là hình chữ nhật.
Để hình chữ nhật \(AHCE\) là hình vuông thì hai cạnh kề bằng nhau, tức \(HA = HC.\)
Mà \(H\) là trung điểm của \(BC\) nên \(HB = HC = \frac{1}{2}BC.\)
Khi đó \[HA = HB = HC = \frac{1}{2}BC.\]
Xét \(\Delta ABC\) có đường trung tuyến \(AH\) thỏa mãn \[HA = \frac{1}{2}BC\] nên \(\Delta ABC\) vuông tại \(A.\)
Vậy \(\Delta ABC\) vuông cân tại \(A\) thì \(AHCE\) là hình vuông.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Trường hợp tìm hiểu trên mạng Internet về số ca mắc bệnh COVID-19 ở Việt Nam là phương pháp thu thập gián tiếp.
Lời giải
Hướng dẫn giải
Đáp án:
a) Đúng.
b) Sai.
c) Sai.
d) Đúng.
⦁ Ta có \(A = 2xy\left( {x{y^2} - 3{x^2}y + 1} \right)\)
\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy\).
Đa thức \[A\] có bậc là 8. Do đó ý a) đúng.
⦁ Ta có \[B = \left( {12{x^4}{y^5} - 36{x^5}{y^4} + 6{x^3}{y^3}} \right):6{x^2}{y^2}\]
\[ = 12{x^4}{y^5}:\left( {6{x^2}{y^2}} \right) - 36{x^5}{y^4}:\left( {6{x^2}{y^2}} \right) + 6{x^3}{y^3}:\left( {6{x^2}{y^2}} \right)\]
\[ = 2{x^2}{y^3} - 6{x^3}{y^2} + xy\].
Khi đó, hệ số tự do của đa thức \(B\) là 0. Do đó ý b) sai.
⦁ Thay \[x = - 1\,;\,\,y = 1\] vào biểu thức \(B\), ta có:
\[B = 2 \cdot {\left( { - 1} \right)^2} \cdot {1^3} - 6 \cdot {\left( { - 1} \right)^3} \cdot {1^2} + \left( { - 1} \right) \cdot 1 = 2 + 6 - 1 = 7\].
Vậy với \[x = - 1\,;\,\,y = 1\] thì \(B = 7\). Do đó ý c) sai.
⦁ Ta có \(A = M + B\)
Suy ra \(M = A - B\)
\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - \left( {2{x^2}{y^3} - 6{x^3}{y^2} + xy} \right)\)
\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - 2{x^2}{y^3} + 6{x^3}{y^2} - xy\)
\( = \left( {2{x^2}{y^3} - 2{x^2}{y^3}} \right) + \left( { - 6{x^3}{y^2} + 6{x^3}{y^2}} \right) + \left( {2xy - xy} \right)\)\( = xy.\)
Như vậy, \(M\) là một đơn thức. Do đó ý d) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.