Biều đồ cột ở hình bên dưới thống kê mực nước cao nhất của sông Đà tại tạm Hòa Bình trong các năm 2015, 2018, 2019, 2020, 2021.
(Nguồn: Niên giám thống kê 2021)
Hỏi năm 2021 mực nước cao nhất của sông Đà tại trạm Hoài Bình đã giảm bao nhiêu phần trăm so với năm 2019? (Kết quả làm tròn đến hàng phần trăm)
A. \[92,25\% \].
B. \(52,25\% \).
C. \(7,75\% \).
D. \(72,75\% \).
Quảng cáo
Trả lời:

Tỉ lệ phần trăm mực nước cao nhất của sông Đà tại trạm Hòa Bình năm 2021 so với năm 2019 là:
\[\frac{{1{\rm{ }}273}}{{1{\rm{ }}380}}.100\% \approx 92,25\% \]
Do đó, năm 2021 mực nước cao nhất của sông Đà tại trạm Hòa Bình đã giảm \[100\% - 92,25\% = 7,75\% \] so với năm 2019.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Xét
\(\Delta ABC\) cân tại \(A\) có \(AH\) là đường trung tuyến nên đồng thời là đường cao của tam giác.
Do đó \(AH \bot BC\) nên \(\Delta AHB\) và \(\Delta AHC\) đều vuông tại \(H.\)
Xét \(\Delta AHB\) vuông tại \(H\) có \(HK\) là đường trung tuyến ứng với cạnh huyền \(AB\) nên \(KH = \frac{1}{2}AB\) (tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông).
Tương tự, xét \(\Delta AHC\) vuông tại \(H\) ta có \(IH = \frac{1}{2}AC.\)
Mà \(I,\) \(K\) lần lượt là trung điểm của \(AC\) và \(AB\) nên \[KA = KB = \frac{1}{2}AB;\,\,IA = IC = \frac{1}{2}AC.\]
Lại có \(AB = AC\) (do \(\Delta ABC\) cân tại \(A)\) nên \(KA = KH = IA = IH.\)
Xét tứ giác \(AKHI\) có \(KA = KH = IA = IH\) nên là hình thoi.
b) Xét tứ giác \(AHCE\) có \(I\) là trung điểm của hai đường chéo \(AC,\,\,HE\) nên \(AHCE\) là hình bình hành.
Lại có \(\widehat {AHC} = 90^\circ \) nên hình bình hành \(AHCE\) là hình chữ nhật.
Để hình chữ nhật \(AHCE\) là hình vuông thì hai cạnh kề bằng nhau, tức \(HA = HC.\)
Mà \(H\) là trung điểm của \(BC\) nên \(HB = HC = \frac{1}{2}BC.\)
Khi đó \[HA = HB = HC = \frac{1}{2}BC.\]
Xét \(\Delta ABC\) có đường trung tuyến \(AH\) thỏa mãn \[HA = \frac{1}{2}BC\] nên \(\Delta ABC\) vuông tại \(A.\)
Vậy \(\Delta ABC\) vuông cân tại \(A\) thì \(AHCE\) là hình vuông.
Lời giải
Hướng dẫn giải
Gọi các điểm như hình vẽ bên.
Trong đó \[AB\] là độ cao cột cờ ban đầu, \[BC = 1\,\,{\rm{m}}\] độ dài cột cờ nâng lên.
Gọi \[AD,{\rm{ }}AK\] lần lượt là bóng cột cờ lúc ban đầu và sau khi nâng.
Theo đề bài, ta có \(\frac{{AK}}{{AD}} = \frac{9}{8}.\)
Tại cùng một thời điểm các tia sáng mặt trời song song nhau nên \[BD\,{\rm{//}}\,CK.\]
Áp dụng định lý Thalès, ta có: \(\frac{{AK}}{{AD}} = \frac{{AC}}{{AB}} = \frac{9}{8}\) hay \(\frac{{AC}}{9} = \frac{{AB}}{8}.\)
Theo tính chất dãy tỉ số bằng nhau, ta có: \(\frac{{AC}}{9} = \frac{{AB}}{8} = \frac{{AC - AB}}{{9 - 8}} = \frac{{BC}}{1} = 1.\)
Do đó \[AB = 8 \cdot 1 = 8\,\,\left( {\rm{m}} \right).\]
Vậy độ cao cột cờ ban đầu là 8 mét.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Biểu đồ đoạn thẳng.
B. Biểu đồ cột kép.
C. Biểu đồ tranh.
D. Biểu đồ hình quạt tròn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.