Một công ty muốn làm một đường ống dẫn từ nhà máy \(C\) trên bờ đến một điểm \({\rm{B}}\) trên đất liền. Điểm \(A\) đảo cách bờ biển ở điểm \(B\) là \(9\,\;{\rm{km}}.\) Giá để xây dựng đường ống từ nhà máy trên biển điểm \(B\) đến diểm \(C\) trên bờ là \(5\,\,000\,\,{\rm{USD}}/{\rm{km}}.\) Khoảng cách từ \(A\) đến \(C\) là \(12\;\,{\rm{km}}{\rm{.}}\) Biết \(1\,\,{\rm{USD}} = 26\,\,115\) đồng tại thời điểm đó. Hỏi chi phí làm đường ống từ điểm \(B\) tới điểm \(C\) của công ty trên khoảng bao nhiêu tỉ đồng? (làm tròn đến chữ số thập phân thứ ba)
Quảng cáo
Trả lời:
Đáp án đúng là: C
Áp dụng định lý Pythagore vào tam giác vuông \(ABC\) vuông tại \(B\) ta có:
\(A{C^2} = A{B^2} + B{C^2}\)
Suy ra \(BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {{{12}^2} - {9^2}} = \sqrt {63} \) (km).
Chi phí làm đường ống từ \(B\) tới điểm \(C\) của công ty trên bằng tiền VNĐ là:
\(\sqrt {63} \cdot 5\,\,000 \cdot 26\,\,115 = 1\,\,036\,\,406\,\,932\) (đồng) \( \approx 1,036\) (tỉ đồng).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án:
a) Đúng
b) Sai.
c) Sai.
d) Đúng.
⦁ Tứ giác \(BMND\) có: \[MN\parallel BD{\rm{ }}\left( {MN\parallel BC} \right)\]; \[MN = BD\] (gt).
Do đó, tứ giác \(BMND\)là hình bình hành. Do đó ý a) là đúng.
⦁ Vì \(\Delta {\rm{ }}ABH\) vuông tại \(H\,\,\left( {AH \bot BC} \right)\) có \(HM\) là trung tuyến nên \(HM = \frac{1}{2}AB\).
Mà \(MA = \frac{1}{2}AB\) suy ra \(MA = HM\).
Vậy \(\Delta {\rm{ }}AMH\) cân tại \[M\]. Do đó ý b) sai.
⦁ Tứ giác \(DHMN\) có \[MN\parallel DH{\rm{ }}\left( {MN\parallel BC} \right)\] nên tứ giác \(DHMN\) là hình thang.\(\left( 1 \right)\)
Ta có \(AH \bot BC\); \[MN\parallel BC\] nên \(AH \bot MN\).
Vì \(\Delta {\rm{ }}AMH\) cân tại \[M\] có \(AH \bot MN\) nên \(MN\) là phân giác của \(\Delta {\rm{ }}AMH\).
Do đó \(\widehat {AMN} = \widehat {HMN}.\) Do đó ý c) sai.
⦁ Tứ giác \(BMND\)là hình bình hành nên \[ND\parallel MB\].
Do đó \(\widehat {AMN} = \widehat {DNM}\)(so le trong) nên \(\widehat {HMN} = \widehat {DNM}\).\(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra tứ giác \(DHMN\) là hình thang cân. Do đó ý d) đúng.
Lời giải
Hướng dẫn giải
Đáp số: 8040.
Đường cao mặt bên hình chóp chính là trung đoạn \[d = 67\;\;{\rm{mm}}\,{\rm{.}}\]
Diện tích xung quanh của khối rubik đó là:
\({S_{xq}} = \frac{1}{2} \cdot C \cdot d = \frac{1}{2} \cdot 180 \cdot 67 = 6030\;\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Đáy là tam giác đều có cạnh là \[180:3 = 60\;\;\left( {{\rm{cm}}} \right).\]
Chiều cao của tam giác đáy là \[67\;\;{\rm{cm}}\,{\rm{.}}\]
Diện tích toàn phần của khối rubik đó là:
\({S_{tp}} = 6030 + \frac{1}{2} \cdot 60 \cdot 67 = 8040\,\,\;\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích toàn phần (tổng diện tích các mặt) của khối rubik đó là \(8040\,\,\;{\rm{c}}{{\rm{m}}^2}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.