(0,5 điểm) Cho hai số \(x,\,\,y\) khác 0 thỏa mãn \({x^2} + \frac{8}{{{x^2}}} + \frac{{{y^2}}}{8} = 8\). Tìm giá trị lớn nhất của biểu thức \(A = xy + 2026.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Theo đề bài: \({x^2} + \frac{8}{{{x^2}}} + \frac{{{y^2}}}{8} = 8\) suy ra \(2{x^2} + \frac{{16}}{{{x^2}}} + \frac{{{y^2}}}{4} = 16\)
Ta có: \[2{x^2} + \frac{{16}}{{{x^2}}} + \frac{{{y^2}}}{4} = \left( {{x^2} + \frac{{16}}{{{x^2}}} - 8} \right) + \left( {{x^2} + \frac{{{y^2}}}{4} - xy} \right) + xy + 8\]
\[ = {\left( {x - \frac{4}{x}} \right)^2} + {\left( {x - \frac{y}{2}} \right)^2} + xy + 8\].
Vì \[{\left( {x - \frac{4}{x}} \right)^2} \ge 0\,;\,\,{\left( {x - \frac{y}{2}} \right)^2} \ge 0\] nên \[xy + 8 \le 16\] hay \[xy \le 8\].
Suy ra \(A = xy + 2026 \le 8 + 2026 = 2034\).
Dấu xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{\left( {x - \frac{4}{x}} \right)^2} = 0\\{\left( {x - \frac{y}{2}} \right)^2} = 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}x - \frac{4}{x} = 0\\x - \frac{y}{2} = 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}{x^2} = 4\\y = 2x\end{array} \right.\).
Khi đó, \(x = 2\,;\,\,y = 4\) hoặc \(x = - 2\,;\,\,y = - \,4\).
Vậy giá trị lớn nhất của biểu thức \(A\) là \[2\,\,034\] khi \(x = 2\,;\,\,y = 4\) hoặc \(x = - 2\,;\,\,y = - \,4\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án:
a) Đúng
b) Sai.
c) Sai.
d) Đúng.
⦁ Tứ giác \(BMND\) có: \[MN\parallel BD{\rm{ }}\left( {MN\parallel BC} \right)\]; \[MN = BD\] (gt).
Do đó, tứ giác \(BMND\)là hình bình hành. Do đó ý a) là đúng.
⦁ Vì \(\Delta {\rm{ }}ABH\) vuông tại \(H\,\,\left( {AH \bot BC} \right)\) có \(HM\) là trung tuyến nên \(HM = \frac{1}{2}AB\).
Mà \(MA = \frac{1}{2}AB\) suy ra \(MA = HM\).
Vậy \(\Delta {\rm{ }}AMH\) cân tại \[M\]. Do đó ý b) sai.
⦁ Tứ giác \(DHMN\) có \[MN\parallel DH{\rm{ }}\left( {MN\parallel BC} \right)\] nên tứ giác \(DHMN\) là hình thang.\(\left( 1 \right)\)
Ta có \(AH \bot BC\); \[MN\parallel BC\] nên \(AH \bot MN\).
Vì \(\Delta {\rm{ }}AMH\) cân tại \[M\] có \(AH \bot MN\) nên \(MN\) là phân giác của \(\Delta {\rm{ }}AMH\).
Do đó \(\widehat {AMN} = \widehat {HMN}.\) Do đó ý c) sai.
⦁ Tứ giác \(BMND\)là hình bình hành nên \[ND\parallel MB\].
Do đó \(\widehat {AMN} = \widehat {DNM}\)(so le trong) nên \(\widehat {HMN} = \widehat {DNM}\).\(\left( 2 \right)\)
Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) suy ra tứ giác \(DHMN\) là hình thang cân. Do đó ý d) đúng.
Lời giải
Đáp án đúng là: C
Áp dụng định lý Pythagore vào tam giác vuông \(ABC\) vuông tại \(B\) ta có:
\(A{C^2} = A{B^2} + B{C^2}\)
Suy ra \(BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {{{12}^2} - {9^2}} = \sqrt {63} \) (km).
Chi phí làm đường ống từ \(B\) tới điểm \(C\) của công ty trên bằng tiền VNĐ là:
\(\sqrt {63} \cdot 5\,\,000 \cdot 26\,\,115 = 1\,\,036\,\,406\,\,932\) (đồng) \( \approx 1,036\) (tỉ đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.