Câu hỏi:

18/07/2025 7 Lưu

Khi muốn biểu diễn tuổi thọ trung bình của người Việt Nam qua 40 năm. Ta nên lựa chọn biểu đồ nào?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khi muốn biểu diễn tuổi thọ trung bình của người Việt Nam qua 40 năm thì nên lựa chọn biểu đồ đoạn thẳng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:

a) Đúng.

b) Sai.

c) Sai.

d) Đúng.

⦁ Ta có \(A = 2xy\left( {x{y^2} - 3{x^2}y + 1} \right)\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy\).

Đa thức \[A\] có bậc là 8. Do đó ý a) đúng.

⦁ Ta có \[B = \left( {12{x^4}{y^5} - 36{x^5}{y^4} + 6{x^3}{y^3}} \right):6{x^2}{y^2}\]

\[ = 12{x^4}{y^5}:\left( {6{x^2}{y^2}} \right) - 36{x^5}{y^4}:\left( {6{x^2}{y^2}} \right) + 6{x^3}{y^3}:\left( {6{x^2}{y^2}} \right)\]

\[ = 2{x^2}{y^3} - 6{x^3}{y^2} + xy\].

Khi đó, hệ số tự do của đa thức \(B\) là 0. Do đó ý b) sai.

⦁ Thay \[x = - 1\,;\,\,y = 1\] vào biểu thức \(B\), ta có:

\[B = 2 \cdot {\left( { - 1} \right)^2} \cdot {1^3} - 6 \cdot {\left( { - 1} \right)^3} \cdot {1^2} + \left( { - 1} \right) \cdot 1 = 2 + 6 - 1 = 7\].

Vậy với \[x = - 1\,;\,\,y = 1\] thì \(B = 7\). Do đó ý c) sai.

⦁ Ta có \(A = M + B\)

Suy ra \(M = A - B\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - \left( {2{x^2}{y^3} - 6{x^3}{y^2} + xy} \right)\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - 2{x^2}{y^3} + 6{x^3}{y^2} - xy\)

\( = \left( {2{x^2}{y^3} - 2{x^2}{y^3}} \right) + \left( { - 6{x^3}{y^2} + 6{x^3}{y^2}} \right) + \left( {2xy - xy} \right)\)\( = xy.\)

Như vậy, \(M\) là một đơn thức. Do đó ý d) đúng.

Lời giải

Hướng dẫn giải

(1,0 điểm) Cho tam giác   A B C   có các đường trung tuyến   B D , C E   cắt nhau tại   G .   Gọi   F , H   lần lượt là trung điểm của   B G , C G .    a) Tứ giác   E F H D   là hình gì? Vì sao?  b) Tìm điều kiện của tam giác   A B C   để tứ giác   E F H D   là hình vuông. (ảnh 1)

a) Tam giác \[ABC\] có các đường trung tuyến \[BD,{\rm{ }}CE\] cắt nhau tại \[G\] nên \[G\] là trọng tâm \[\Delta ABC,\] do đó \(DG = \frac{1}{2}BG,\) \(EG = \frac{1}{2}CG.\)

Mà \[F,{\rm{ }}H\] lần lượt là trung điểm của \[BG,{\rm{ }}CG\] nên

\(BF = FG = \frac{1}{2}BG,\) \(CH = HG = \frac{1}{2}CG.\)

Do đó \[DG = BF = FG,{\rm{ }}EG = CH = HG.\]

Suy ra, \[G\] là trung điểm của \[FD,{\rm{ }}G\] là trung điểm của \[EH.\]

Tứ giác \[EFHD\] có hai đường chéo \[EH\] và \(FD\) cắt nhau tại trung điểm \[G\] của mỗi đường nên \[EFHD\] là hình bình hành.

b) Để hình bình hành \[EFHD\] là hình vuông thì \[EH = DF\] và \[EH \bot DF.\]

Suy ra \[EG = DG,{\rm{ }}BG = CG\] và \[BD \bot CE.\]

⦁ Xét \(\Delta BEG\) và \[\Delta CDG\] có:

\[BG = CG,\] \(\widehat {EGB} = \widehat {DGC}\) (đối đỉnh), \[EG = DG\]

Do đó \(\Delta BEG = \Delta CDG\) (c.g.c).

Suy ra \[BE = CD\] (hai cạnh tương ứng).\[\left( 1 \right)\]

Mà \[BD,{\rm{ }}CE\] là các đường trung tuyến của \(\Delta ABC\) nên \[E\] là trung điểm của \[AB,{\rm{ }}D\] là trung điểm của \[AC.\]

Suy ra \[AB = 2BE,{\rm{ }}AC = 2CD.\,\,\,\,\,\,\left( 2 \right)\]

Từ (1) và (2) suy ra \[AB = AC.\]

⦁ Dễ thấy, nếu \[AB = AC\] và \[BD \bot CE\] thì tứ giác \[EFHD\] là hình vuông.

Vậy tam giác \[ABC\] cân tại \[A\] có hai đường trung tuyến \[BD,CE\] vuông góc với nhau thì tứ giác \[EFHD\] là hình vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP