Câu hỏi:

18/07/2025 41 Lưu

Biều đồ cột ở hình bên dưới thống kê mực nước cao nhất của sông Đà tại tạm Hòa Bình trong các năm 2015, 2018, 2019, 2020, 2021.

Biều đồ cột ở hình bên dưới thống kê mực nước cao nhất của sông Đà tại tạm Hòa Bình trong các năm 2015, 2018, 2019, 2020, 2021.(Nguồn: Niên giám thống kê 2021)Hỏi năm 2021 mực nước cao nhất c (ảnh 1)

(Nguồn: Niên giám thống kê 2021)

Hỏi năm 2021 mực nước cao nhất của sông Đà tại trạm Hoài Bình đã giảm bao nhiêu phần trăm so với năm 2019? (Kết quả làm tròn đến hàng phần trăm)

A. \[92,25\% \].

B. \(52,25\% \).

C. \(7,75\% \).

D. \(72,75\% \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tỉ lệ phần trăm mực nước cao nhất của sông Đà tại trạm Hòa Bình năm 2021 so với năm 2019 là:

\[\frac{{1{\rm{ }}273}}{{1{\rm{ }}380}}.100\% \approx 92,25\% \]

Do đó, năm 2021 mực nước cao nhất của sông Đà tại trạm Hòa Bình đã giảm \[100\% - 92,25\% = 7,75\% \] so với năm 2019.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:

a) Sai.

b) Đúng.

c) Đúng.

d) Sai.

Cho tam giác   A B C  . Dựng bên ngoài tam giác đó hai tam giác   A B D , A C E   vuông cân tại đỉnh   A   rồi dựng hình bình hành   A E I D  . Biết   ˆ D A I = ˆ A B C  . Gọi   K   là trung điểm của   B D .    a)   ˆ D A I + ˆ B A H = 45 ∘  .  b)   A I ⊥ B C  .  c)   ˆ E B A = ˆ C D A  .  d)   K A = 1 2 K B  . (ảnh 1)

⦁ Giả sử \[AI\] cắt \[BC\] ở \[H\].

Ta có: \[\widehat {DAI} + \widehat {DAB} + \widehat {BAH} = 180^\circ \], mà \[\widehat {DAB} = 90^\circ \] (do \[\Delta DAB\] vuông cân tại \[A\]).

Suy ra \[\widehat {DAI} + \widehat {BAH} = 90^\circ \]. Do đó ý a) sai.

⦁ Ta có \[\widehat {DAI} = \widehat {ABC}\] (gt) nên \[\widehat {ABH} + \widehat {BAH} = 90^\circ \].

Trong \[\Delta ABH\] có: \[\widehat {ABH} + \widehat {BAH} + \widehat {AHB} = 180^\circ \].

Suy ra \[\widehat {AHB} = 180^\circ \left( {\widehat {ABH} + \widehat {BAH}} \right) = 180^\circ - 90^\circ = 90^\circ \] hay \[AI \bot BC\]. Do đó ý b) đúng.

⦁ Ta có \[\widehat {BAE} = \widehat {BAC} + \widehat {CAE} = \widehat {BAC} + 90^\circ \] và \[\widehat {DAC} = \widehat {BAC} + \widehat {BAD} = \widehat {BAC} + 90^\circ \].

Do đó \[\widehat {BAE} = \widehat {DAC}\].

Xét \[\Delta BAE\] và \[\Delta DAC\] có:

\[AB = AD;\,\,\widehat {BAE} = \widehat {DAC};\,\,AC = AE\];

Do đó \[\Delta BAE = \Delta DAC\] (c.g.c).

Suy ra \(\widehat {EBA} = \widehat {CDA}\) (hai góc tương ứng). Do đó ý c) đúng.

⦁ Tam giác \[ABD\] vuông cân tại \[A\] nên \[AK\] vừa là đường trung tuyến, vừa là đường cao, đường phân giác. Do đó \(\widehat {DAK} = \frac{1}{2}\widehat {BAD} = 45^\circ \).

Khi đó \(\widehat {ABK} = \widehat {BAK} = 45^\circ \) nên \[\Delta ABK\] vuông cân tại \[K\], do đó \[KA = KB\]. Do đó ý d) sai.

Lời giải

Hướng dẫn giải

Đáp án:

a) Đúng.

b) Sai.

c) Sai.

d) Đúng.

⦁ Ta có \(A = 2xy\left( {x{y^2} - 3{x^2}y + 1} \right)\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy\).

Đa thức \[A\] có bậc là 8. Do đó ý a) đúng.

⦁ Ta có \[B = \left( {12{x^4}{y^5} - 36{x^5}{y^4} + 6{x^3}{y^3}} \right):6{x^2}{y^2}\]

\[ = 12{x^4}{y^5}:\left( {6{x^2}{y^2}} \right) - 36{x^5}{y^4}:\left( {6{x^2}{y^2}} \right) + 6{x^3}{y^3}:\left( {6{x^2}{y^2}} \right)\]

\[ = 2{x^2}{y^3} - 6{x^3}{y^2} + xy\].

Khi đó, hệ số tự do của đa thức \(B\) là 0. Do đó ý b) sai.

⦁ Thay \[x = - 1\,;\,\,y = 1\] vào biểu thức \(B\), ta có:

\[B = 2 \cdot {\left( { - 1} \right)^2} \cdot {1^3} - 6 \cdot {\left( { - 1} \right)^3} \cdot {1^2} + \left( { - 1} \right) \cdot 1 = 2 + 6 - 1 = 7\].

Vậy với \[x = - 1\,;\,\,y = 1\] thì \(B = 7\). Do đó ý c) sai.

⦁ Ta có \(A = M + B\)

Suy ra \(M = A - B\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - \left( {2{x^2}{y^3} - 6{x^3}{y^2} + xy} \right)\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - 2{x^2}{y^3} + 6{x^3}{y^2} - xy\)

\( = \left( {2{x^2}{y^3} - 2{x^2}{y^3}} \right) + \left( { - 6{x^3}{y^2} + 6{x^3}{y^2}} \right) + \left( {2xy - xy} \right)\)\( = xy.\)

Như vậy, \(M\) là một đơn thức. Do đó ý d) đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP