Câu hỏi:

18/07/2025 118 Lưu

Cho hình chóp tam giác đều \(S.ABC,\) có cạnh đáy \(AB = 5{\rm{\;cm}}\) và độ dài trung đoạn \(SI = 6{\rm{\;cm}}\) (hình vẽ bên). Tính diện tích xung quanh và diện tích toàn phần của hình chóp \(S.ABC.\)

Cho hình chóp tam giác đều   S . A B C ,   có cạnh đáy   A B = 5 c m   và độ dài trung đoạn   S I = 6 c m   (hình vẽ bên). Tính diện tích xung quanh và diện tích toàn phần của hình chóp   S . A B C .   (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp số: 45.

Diện tích xung quanh của hình chóp tam giác đều \(S.ABC\) là:

\({S_{xq}} = \frac{1}{2} \cdot \left( {AB + BC + CA} \right) \cdot SI = \frac{1}{2} \cdot \left( {5 + 5 + 5} \right) \cdot 6 = 45{\rm{\;}}\left( {{\rm{c}}{{\rm{m}}^2}} \right){\rm{.}}\)

Vậy diện tích xung quanh và diện tích toàn phần của hình chóp \(S.ABC\)là \(45{\rm{\;c}}{{\rm{m}}^2}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:

a) Sai.

b) Đúng.

c) Đúng.

d) Sai.

Cho tam giác   A B C  . Dựng bên ngoài tam giác đó hai tam giác   A B D , A C E   vuông cân tại đỉnh   A   rồi dựng hình bình hành   A E I D  . Biết   ˆ D A I = ˆ A B C  . Gọi   K   là trung điểm của   B D .    a)   ˆ D A I + ˆ B A H = 45 ∘  .  b)   A I ⊥ B C  .  c)   ˆ E B A = ˆ C D A  .  d)   K A = 1 2 K B  . (ảnh 1)

⦁ Giả sử \[AI\] cắt \[BC\] ở \[H\].

Ta có: \[\widehat {DAI} + \widehat {DAB} + \widehat {BAH} = 180^\circ \], mà \[\widehat {DAB} = 90^\circ \] (do \[\Delta DAB\] vuông cân tại \[A\]).

Suy ra \[\widehat {DAI} + \widehat {BAH} = 90^\circ \]. Do đó ý a) sai.

⦁ Ta có \[\widehat {DAI} = \widehat {ABC}\] (gt) nên \[\widehat {ABH} + \widehat {BAH} = 90^\circ \].

Trong \[\Delta ABH\] có: \[\widehat {ABH} + \widehat {BAH} + \widehat {AHB} = 180^\circ \].

Suy ra \[\widehat {AHB} = 180^\circ \left( {\widehat {ABH} + \widehat {BAH}} \right) = 180^\circ - 90^\circ = 90^\circ \] hay \[AI \bot BC\]. Do đó ý b) đúng.

⦁ Ta có \[\widehat {BAE} = \widehat {BAC} + \widehat {CAE} = \widehat {BAC} + 90^\circ \] và \[\widehat {DAC} = \widehat {BAC} + \widehat {BAD} = \widehat {BAC} + 90^\circ \].

Do đó \[\widehat {BAE} = \widehat {DAC}\].

Xét \[\Delta BAE\] và \[\Delta DAC\] có:

\[AB = AD;\,\,\widehat {BAE} = \widehat {DAC};\,\,AC = AE\];

Do đó \[\Delta BAE = \Delta DAC\] (c.g.c).

Suy ra \(\widehat {EBA} = \widehat {CDA}\) (hai góc tương ứng). Do đó ý c) đúng.

⦁ Tam giác \[ABD\] vuông cân tại \[A\] nên \[AK\] vừa là đường trung tuyến, vừa là đường cao, đường phân giác. Do đó \(\widehat {DAK} = \frac{1}{2}\widehat {BAD} = 45^\circ \).

Khi đó \(\widehat {ABK} = \widehat {BAK} = 45^\circ \) nên \[\Delta ABK\] vuông cân tại \[K\], do đó \[KA = KB\]. Do đó ý d) sai.

Lời giải

Hình 1 có 4 góc vuông nên là hình chữ nhật.

Hình 2 có 3 góc vuông và hai đường chéo vuông góc với nhau nên là hình vuông.

Hình 3 có hai đường chéo cắt nhau tại trung điểm của mỗi đường và hai đường chéo này vuông góc với nhau nên là hình thoi.

Hình 4 có 4 cạnh bằng nhau nên là hình thoi.

Vậy trong các hình đã cho, Hình 2 là hình vuông.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP