Để giúp đỡ những người khó khăn, thu nhập thấp được về quê ăn tết đoàn tụ với gia đình, một công ty đã thuê xe dịch vụ cho những chuyến xe nghĩa tình đưa \(180\) người và \(8\) tấn hàng về quê ăn tết. Nơi thuê xe có hai loại xe A và B, trong đó xe A có \(10\) chiếc, xe B có \(9\) chiếc. Một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng. Biết rằng mỗi xe loại A có thể chở tối đa \(30\) người và \(0,8\)tấn hàng, mỗi xe loại B có thể chở tối đa \(20\) người và \(1,6\) tấn hàng.
a) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê. Khi đó, số tiền cần bỏ ra để thuê xe là \(F\left( {x;y} \right) = 5x + 4y\) (triệu đồng).
b) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê, ta có hệ bất phương trình biểu thị các điều kiện của bài toán là: \(\left\{ \begin{array}{l}30x + 20y \ge 180\\0,8x + 1,6y \ge 8\\0 \le x \le 10\\0 \le y \le 9\end{array} \right.\left( * \right).\)
c) Điểm \(M\left( {4\,;2} \right)\) thuộc miền nghiệm của hệ bất phương trình biểu thị các điều kiện của bài toán.
d) Công ty cần thuê 4 xe loại \(A\) và 3 xe loại \(B\) thì chi phí thấp nhất.
Để giúp đỡ những người khó khăn, thu nhập thấp được về quê ăn tết đoàn tụ với gia đình, một công ty đã thuê xe dịch vụ cho những chuyến xe nghĩa tình đưa \(180\) người và \(8\) tấn hàng về quê ăn tết. Nơi thuê xe có hai loại xe A và B, trong đó xe A có \(10\) chiếc, xe B có \(9\) chiếc. Một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng. Biết rằng mỗi xe loại A có thể chở tối đa \(30\) người và \(0,8\)tấn hàng, mỗi xe loại B có thể chở tối đa \(20\) người và \(1,6\) tấn hàng.
a) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê. Khi đó, số tiền cần bỏ ra để thuê xe là \(F\left( {x;y} \right) = 5x + 4y\) (triệu đồng).
b) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê, ta có hệ bất phương trình biểu thị các điều kiện của bài toán là: \(\left\{ \begin{array}{l}30x + 20y \ge 180\\0,8x + 1,6y \ge 8\\0 \le x \le 10\\0 \le y \le 9\end{array} \right.\left( * \right).\)
c) Điểm \(M\left( {4\,;2} \right)\) thuộc miền nghiệm của hệ bất phương trình biểu thị các điều kiện của bài toán.
d) Công ty cần thuê 4 xe loại \(A\) và 3 xe loại \(B\) thì chi phí thấp nhất.
Quảng cáo
Trả lời:
a) Đúng. Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê.
Vì một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng nên số tiền cần bỏ ra để thuê xe là \(F\left( {x;y} \right) = 5x + 4y\)(triệu đồng).
b) Đúng. Ta có \(x\) xe loại A chở được \(30x\) người và \(0,8x\) tấn hàng; \(y\) xe loại B chở được \(20y\)người và \(1,6y\) tấn hàng.
Suy ra \(x\)xe loại A và \(y\) xe loại B chở được \(30x + 20y\) và \(0,8x + 1,6y\) tấn hàng.
Ta có hệ bất phương trình sau: \(\left\{ \begin{array}{l}30x + 20y \ge 180\\0,8x + 1,6y \ge 8\\0 \le x \le 10\\0 \le y \le 9\end{array} \right.\left( * \right)\).
c) Sai. Thay tọa độ điểm \(M\left( {4\,;2} \right)\) vào hệ \(\left( * \right)\) không thỏa bất phương trình \(30x + 20y \ge 180\). Do đó điểm \(M\left( {4\,;2} \right)\) không thuộc miền nghiệm của hệ \(\left( * \right)\).
d) Đúng.
Miền nghiệm của hệ \(\left( * \right)\)là tứ giác ABCD (kể cả bờ) với các đỉnh lần lượt là \(A\left( {0;9} \right),B\left( {4;3} \right),C\left( {10;0} \right),D\left( {10;9} \right).\)
Ta thấy \(F\left( {x;y} \right) = 5x + 4y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D.\)
Tại \(A\left( {0;9} \right):F = 36\) (triệu đồng).
Tại \(B\left( {4;3} \right):F = 32\) (triệu đồng).
Tại \(C\left( {10;0} \right):F = 50\) (triệu đồng).
Tại \(D\left( {10;9} \right):F = 86\) (triệu đồng).
Như vậy để chi phí thấp nhất cần thuê 4 xe loại A và 3 xe loại B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông là: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}26x + 22y \ge 56\\26x + 22y \le 91\\x \le y\\x \ge 0\\y \ge 0\end{array}\end{array}} \right.\).
b) Sai. Miền nghiệm của hệ trên là miền tứ giác \(ABCD\) với \(A\left( {\frac{7}{6};\frac{7}{6}} \right),B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\), \(C\left( {0;\frac{{91}}{{22}}} \right)\)\(D\left( {0;\frac{{28}}{{11}}} \right)\) ở hình dưới đây:
c) Đúng. Một nghiệm \(\left( {{x_0};{y_0}} \right)\) của hệ bất phương trình với \({x_0},{y_0}\) là \(\left( {{x_0};{y_0}} \right) = \left( {1;2} \right)\).
d) Sai. Điểm \(B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\) là điểm có hoành độ lớn nhất.
Lời giải
Gọi \(x,\;y\) lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế \(\left( {x \ge 0;\,\,y \ge 0} \right)\).
Để pha chế \(x\) lít nước cam cần \(30x\)g đường, \(x\) lít nước và \(x\)g hương liệu.
Để pha chế \(y\) lít nước táo cần \(10y\)g đường, \(y\) lít nước và \(4y\)g hương liệu.
Theo bài ra ta có hệ bất phương trình: \(\left\{ \begin{array}{l}30x + 10y \le 210\\x + y \le 9\\x + 4y \le 24\\x \ge 0;\;y \ge 0\end{array} \right.\quad \left( * \right)\).
Số điểm đạt được khi pha \(x\) lít nước cam và \(y\) lít nước táo là \(M\left( {x;y} \right) = 60x + 80y\). Bài toán trở thành tìm \(x,\;y\) để \(M\left( {x\,;\,y} \right)\) đạt giá trị lớn nhất.
Ta biểu diễn miền nghiệm của hệ \(\left( * \right)\) trên mặt phẳng tọa độ như sau:
Miền nghiệm là ngũ giác \(ABCDE\).
Tọa độ các điểm: \(A\left( {4\,;\,5} \right)\), \(B\left( {6\,;\,3} \right)\), \(C\left( {7\,;\,0} \right)\), \(D\left( {0\,;\,0} \right)\), \(E\left( {0\,;\,6} \right)\).
\(M\left( {x\,;\,y} \right)\) sẽ đạt giá trị lớn nhất, giá trị nhỏ nhất tại các đỉnh của miền nghiệm nên thay tọa độ các điểm vào biểu thức \(M\left( {x\,;\,y} \right)\) ta được:
\(M\left( {4\,;\,5} \right) = 640\); \(M\left( {6\,;\,3} \right) = 600\), \(M\left( {7\,;\,0} \right) = 420\), \(M\left( {0\,;\,0} \right) = 0\), \(M\left( {0\,;\,6} \right) = 480\).
Vậy giá trị lớn nhất của \(M\left( {x\,;\,y} \right)\) bằng \(640\) khi \(x = 4;\;y = 5\) \( \Rightarrow a = 4;\;b = 5 \Rightarrow a - b = - 1\).
Đáp án: −1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.