Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là \(X\) và \(Y\). Mỗi gói thực phẩm \(X\) chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin \(B\). Mỗi gói thực phẩm \(Y\) chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn vị vitamin \(B\). Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin \(B\). Mỗi ngày không được dùng quá 12 gói mỗi loại.
a) Hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\) là \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\).
b) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là một ngũ giác.
c) Biết 1 gói thực phẩm loại \(X\) giá 20000 đồng, 1 gói thực phẩm loại \(Y\) giá 25000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\) để chi phí mua là ít nhất.
d) Điểm \(\left( {10;8} \right)\) không thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\).
Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là \(X\) và \(Y\). Mỗi gói thực phẩm \(X\) chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin \(B\). Mỗi gói thực phẩm \(Y\) chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn vị vitamin \(B\). Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin \(B\). Mỗi ngày không được dùng quá 12 gói mỗi loại.
a) Hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\) là \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\).
b) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là một ngũ giác.
c) Biết 1 gói thực phẩm loại \(X\) giá 20000 đồng, 1 gói thực phẩm loại \(Y\) giá 25000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\) để chi phí mua là ít nhất.
d) Điểm \(\left( {10;8} \right)\) không thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\).
Quảng cáo
Trả lời:
a) Đúng. Gọi \(x,y\) lần lượt là số gói thực phẩm loại \(X\), loại \(Y\) mà bà Lan cần dùng trong một ngày. Ta có: \(0 \le x \le 12,0 \le y \le 12\).
Số đơn vị canxi được cung cấp là \(20x + 20y\). Ta có: \(20x + 20y \ge 240\) hay \(x + y \ge 12\).
Số đơn vị sắt được cung cấp là \(20x + 10y\). Ta có: \(20x + 10y \ge 160\) hay \(2x + y \ge 16\).
Số đơn vị vitamin \(B\) được cung cấp là \(10x + 20y\). Ta có: \(10x + 20y \ge 140\) hay \(x + 2y \ge 14.\)
Ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\) .
b) Đúng. Miền nghiệm của hệ bất phương trình là miền ngũ giác \(ABCDE\) với \(A(12;12)\), \(B(2;12),C(4;8),D(10;2),E(12;1)\)
c) Đúng. Số tiền bà Lan dùng để mua các gói thực phẩm \(X,Y\) trong một ngày là: \(T = 20x + 25y\) (nghìn đồng).
Tính giá trị của \(T\) tại các cặp số \((x;y)\) là toạ độ các đỉnh trên rồi so sánh các giá trị đó, ta được \(T\) đạt giá trị nhỏ nhất bằng 250 nghìn đồng tại \(x = 10;y = 2\).
Vậy để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\) nhưng với chi phí thấp nhất thì mỗi ngày bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\).
d) Sai. Điểm \(\left( {10;8} \right)\) thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông là: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}26x + 22y \ge 56\\26x + 22y \le 91\\x \le y\\x \ge 0\\y \ge 0\end{array}\end{array}} \right.\).
b) Sai. Miền nghiệm của hệ trên là miền tứ giác \(ABCD\) với \(A\left( {\frac{7}{6};\frac{7}{6}} \right),B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\), \(C\left( {0;\frac{{91}}{{22}}} \right)\)\(D\left( {0;\frac{{28}}{{11}}} \right)\) ở hình dưới đây:
c) Đúng. Một nghiệm \(\left( {{x_0};{y_0}} \right)\) của hệ bất phương trình với \({x_0},{y_0}\) là \(\left( {{x_0};{y_0}} \right) = \left( {1;2} \right)\).
d) Sai. Điểm \(B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\) là điểm có hoành độ lớn nhất.
Lời giải
Đáp án đúng là: C
Dựa vào hình vẽ ta thấy đồ thị gồm hai đường thẳng \(x + 4y = 0\) và \(2x + y + 3 = 0\).
Ta thấy điểm có tọa độ \(\left( { - 4;2} \right)\)thuộc miền nghiệm của bất phương trình: \(x + 4y > 0\).
Thay tọa độ điểm \(\left( { - 4;2} \right)\) vào bất phương trình \(2x + y + 3 \le 0\) ta được \(2.\left( { - 4} \right) + 2 + 3 \le 0\) (luôn đúng). Suy ra nửa mặt phẳng bờ là đường thẳng \(2x + y + 3 = 0\) chứa điểm \(\left( { - 4;2} \right)\) kể cả đường thẳng đó là miền nghiệm của bất phương trình \(2x + y + 3 \le 0\).
Vậy phần không tô màu là hình biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + 4y > 0\\2x + y + 3 \le 0.\end{array} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.