Một đội sản xuất cần 3 giờ để làm xong sản phẩm loại \(I\) và 2 giờ để làm xong sản phẩm loại II. Biết thời gian tối đa cho việc sản xuất hai sản phẩm trên là 18 giờ. Gọi \(x,y\) lần lượt là số sản phẩm loại \(I\), loại \(II\) mà đội làm được trong thời gian cho phép.
a) Tổng thời gian làm xong sản phẩm loại \(I\) là \(2x\), tổng thời gian làm xong sản phẩm loại II là \(3y\).
b) Bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\) là \(3x + 2y < 18\).
c) \(\left( {3\,;\,4} \right)\) là một nghiệm của bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\).
d) \(\left( {4;\,3} \right)\) là một nghiệm của bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\).
Một đội sản xuất cần 3 giờ để làm xong sản phẩm loại \(I\) và 2 giờ để làm xong sản phẩm loại II. Biết thời gian tối đa cho việc sản xuất hai sản phẩm trên là 18 giờ. Gọi \(x,y\) lần lượt là số sản phẩm loại \(I\), loại \(II\) mà đội làm được trong thời gian cho phép.
a) Tổng thời gian làm xong sản phẩm loại \(I\) là \(2x\), tổng thời gian làm xong sản phẩm loại II là \(3y\).
b) Bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\) là \(3x + 2y < 18\).
c) \(\left( {3\,;\,4} \right)\) là một nghiệm của bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\).
d) \(\left( {4;\,3} \right)\) là một nghiệm của bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\).
Quảng cáo
Trả lời:
a) Sai. Tổng thời gian làm xong sản phẩm loại \(I\) là \(3x\), tổng thời gian làm xong sản phẩm loại II là \(2y\).
b) Sai. Ta có bất phương trình: \(3x + 2y \le 18\,\,\,\,\,\left( * \right)\) với điều kiện \(x,y \in \mathbb{N}\).
c) Đúng. Thay cặp số \(\left( {3\,;\,4} \right)\) vào bất phương trình \(\left( * \right):3.3 + 2.4 \le 18\) (đúng) suy ra \(\left( {3\,;\,4} \right)\) là một nghiệm của \(\left( * \right)\).
d) Đúng. Thay cặp số \(\left( {4;\,3} \right)\) vào bất phương trình \(\left( * \right):3.4 + 2.3 \le 18\) (đúng) suy ra \(\left( {4;\,3} \right)\) là một nghiệm của \(\left( * \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Để bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) là bậc nhất hai ẩn thì
\({\left( {m + 1} \right)^2} + {\left( {{m^2} + m} \right)^2} > 0\)\( \Leftrightarrow {\left( {m + 1} \right)^2}\left( {1 + {m^2}} \right) > 0 \Leftrightarrow m \ne - 1\).
Điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) nên tọa độ điểm \(M\left( {1;2} \right)\) thỏa mãn bất phương trình.
Từ đó ta có \(m + 1 + 2\left( {{m^2} + m} \right) - 1 > 0 \Leftrightarrow 2{m^2} + 3m > 0 \Leftrightarrow m\left( {2m + 3} \right) > 0\) \(\left( * \right)\).
\[\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\2m + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\2m + 3 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\m > - \frac{3}{2}\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\m < - \frac{3}{2}\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}m > 0\\m < - \frac{3}{2}\end{array} \right.\).
Mà \(m \ne - 1\) nên ta được \(m \in \left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {0; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.