Câu hỏi:

22/07/2025 377 Lưu

Phần không bị gạch chéo trong hình vẽ bên dưới là miền nghiệm của bất phương trình nào? 
Phần không bị gạch chéo trong hình vẽ bên dưới là miền nghiệm của bất phương trình nào? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Từ hình vẽ ta thấy điểm \[O\left( {0;0} \right)\] thuộc miền nghiệm của bất phương trình cần tìm

Thay điểm \[O\left( {0;0} \right)\] vào biểu thức \[3x - 2y\] ta có \[3.0 - 2.0 >  - 6\].

Do đó hình vẽ trên là miền nghiệm của bất phương trình \(3x - 2y >  - 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Để bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) là bậc nhất hai ẩn thì

\({\left( {m + 1} \right)^2} + {\left( {{m^2} + m} \right)^2} > 0\)\( \Leftrightarrow {\left( {m + 1} \right)^2}\left( {1 + {m^2}} \right) > 0 \Leftrightarrow m \ne  - 1\).

Điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) nên tọa độ điểm \(M\left( {1;2} \right)\) thỏa mãn bất phương trình.

Từ đó ta có \(m + 1 + 2\left( {{m^2} + m} \right) - 1 > 0 \Leftrightarrow 2{m^2} + 3m > 0 \Leftrightarrow m\left( {2m + 3} \right) > 0\) \(\left( * \right)\).

\[\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\2m + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\2m + 3 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\m >  - \frac{3}{2}\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\m <  - \frac{3}{2}\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}m > 0\\m <  - \frac{3}{2}\end{array} \right.\).

Mà \(m \ne  - 1\) nên ta được \(m \in \left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {0; + \infty } \right)\).

Lời giải

Vì \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình \(2x + 3y - 10 \le 0\) nên ta có:

\(2m_0^2 + 3n_0^2 \le 10 \Rightarrow \left\{ \begin{array}{l}m_0^2 \le 5\\n_0^2 \le \frac{{10}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - \sqrt 5  \le {m_0} \le \sqrt 5 \\ - \sqrt {\frac{{10}}{3}}  \le {n_0} \le \sqrt {\frac{{10}}{3}} \end{array} \right.\)  do \({m_0},{n_0} \in \mathbb{Z} \Rightarrow \left\{ \begin{array}{l}{m_0} \in \left\{ { - 2; - 1;0;1;2} \right\}\\{n_0} \in \left\{ { - 1;0;1} \right\}\end{array} \right.\).

Thử lại ta loại các bộ \[\left( {2; - 1} \right);\left( {2;1} \right),\left( { - 2;1} \right),\left( { - 2; - 1} \right)\;\].

Vậy có 11 cặp số \(\left( {{m_0}\,;\,{n_0}} \right)\) sao cho \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình đã cho.

Đáp án: 11.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP