Câu hỏi:

22/07/2025 124 Lưu

Phần III. Trắc nghiệm trả lời ngắn

Cho bất phương trình \(2x + 3y - 10 \le 0\). Hỏi có bao nhiêu cặp số nguyên \(\left( {{m_0}\,;\,{n_0}} \right)\) thoả mãn \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình đã cho?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình \(2x + 3y - 10 \le 0\) nên ta có:

\(2m_0^2 + 3n_0^2 \le 10 \Rightarrow \left\{ \begin{array}{l}m_0^2 \le 5\\n_0^2 \le \frac{{10}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - \sqrt 5  \le {m_0} \le \sqrt 5 \\ - \sqrt {\frac{{10}}{3}}  \le {n_0} \le \sqrt {\frac{{10}}{3}} \end{array} \right.\)  do \({m_0},{n_0} \in \mathbb{Z} \Rightarrow \left\{ \begin{array}{l}{m_0} \in \left\{ { - 2; - 1;0;1;2} \right\}\\{n_0} \in \left\{ { - 1;0;1} \right\}\end{array} \right.\).

Thử lại ta loại các bộ \[\left( {2; - 1} \right);\left( {2;1} \right),\left( { - 2;1} \right),\left( { - 2; - 1} \right)\;\].

Vậy có 11 cặp số \(\left( {{m_0}\,;\,{n_0}} \right)\) sao cho \(\left( {m_0^2\,;\,n_0^2} \right)\) là nghiệm của bất phương trình đã cho.

Đáp án: 11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Để bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) là bậc nhất hai ẩn thì

\({\left( {m + 1} \right)^2} + {\left( {{m^2} + m} \right)^2} > 0\)\( \Leftrightarrow {\left( {m + 1} \right)^2}\left( {1 + {m^2}} \right) > 0 \Leftrightarrow m \ne  - 1\).

Điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) nên tọa độ điểm \(M\left( {1;2} \right)\) thỏa mãn bất phương trình.

Từ đó ta có \(m + 1 + 2\left( {{m^2} + m} \right) - 1 > 0 \Leftrightarrow 2{m^2} + 3m > 0 \Leftrightarrow m\left( {2m + 3} \right) > 0\) \(\left( * \right)\).

\[\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\2m + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\2m + 3 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\m >  - \frac{3}{2}\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\m <  - \frac{3}{2}\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}m > 0\\m <  - \frac{3}{2}\end{array} \right.\).

Mà \(m \ne  - 1\) nên ta được \(m \in \left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {0; + \infty } \right)\).

Câu 2

Lời giải

Đáp án đúng là: B

Từ hình vẽ ta thấy điểm \[O\left( {0;0} \right)\] thuộc miền nghiệm của bất phương trình cần tìm

Thay điểm \[O\left( {0;0} \right)\] vào biểu thức \[3x - 2y\] ta có \[3.0 - 2.0 >  - 6\].

Do đó hình vẽ trên là miền nghiệm của bất phương trình \(3x - 2y >  - 6\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP