Câu hỏi:

22/07/2025 38 Lưu

Phần II. Trắc nghiệm đúng, sai

An thích ăn hai loại trái cây là cam và xoài, mỗi tuần mẹ cho An 200000 đồng để mua trái cây. Biết rằng giá cam là 15000 đồng/ 1 kg, giá xoài là 30000 đồng/1 kg. Gọi \(x,y\) lần lượt là số kilogam cam và xoài mà An có thể mua về sử dụng trong một tuần.

a) Trong tuần, số tiền An có thể mua cam là \(15000x\) đồng, số tiền An có thể mua xoài là \(30000y\) đồng với \(\left( {x,y > 0} \right)\).

b) Bất phương trình bậc nhất cho hai ẩn \(x,y\) là \(3x + 6y \ge 40\).

c) Cặp số \(\left( {5;4} \right)\) thỏa mãn bất phương trình bậc nhất cho hai ẩn \(x,y\).

d) An có thể mua \(4\)kg cam, \(5\;\)kg xoài trong tuần.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Sai. Trong tuần, số tiền An có thể mua cam là \(15000x\), số tiền An có thể mua xoài là \(30000y\) với \(\left( {x,y \ge 0} \right)\).

b) Sai. Ta có bất phương trình: \(15000x + 30000y \le 200000 \Leftrightarrow 3x + 6y \le 40\,\,\,\,\,\left( * \right)\).

c) Đúng. Xét \(x = 5,y = 4\) thay vào bất phương trình: \(3.5 + 6.4 \le 40\) (đúng) nên \(\left( {5\,;\,4} \right)\) là một nghiệm của \(\left( * \right)\).

d) Sai. Xét \(x = 4,y = 5\) thay vào bất phương trình: \(3.4 + 6.5 \le 40\) (sai) nên An không có thể mua \(4\)kg cam, \(5\;\)kg xoài trong tuần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Để bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) là bậc nhất hai ẩn thì

\({\left( {m + 1} \right)^2} + {\left( {{m^2} + m} \right)^2} > 0\)\( \Leftrightarrow {\left( {m + 1} \right)^2}\left( {1 + {m^2}} \right) > 0 \Leftrightarrow m \ne  - 1\).

Điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) nên tọa độ điểm \(M\left( {1;2} \right)\) thỏa mãn bất phương trình.

Từ đó ta có \(m + 1 + 2\left( {{m^2} + m} \right) - 1 > 0 \Leftrightarrow 2{m^2} + 3m > 0 \Leftrightarrow m\left( {2m + 3} \right) > 0\) \(\left( * \right)\).

\[\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\2m + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\2m + 3 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\m >  - \frac{3}{2}\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\m <  - \frac{3}{2}\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}m > 0\\m <  - \frac{3}{2}\end{array} \right.\).

Mà \(m \ne  - 1\) nên ta được \(m \in \left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {0; + \infty } \right)\).

Câu 2

Lời giải

Đáp án đúng là: B

Từ hình vẽ ta thấy điểm \[O\left( {0;0} \right)\] thuộc miền nghiệm của bất phương trình cần tìm

Thay điểm \[O\left( {0;0} \right)\] vào biểu thức \[3x - 2y\] ta có \[3.0 - 2.0 >  - 6\].

Do đó hình vẽ trên là miền nghiệm của bất phương trình \(3x - 2y >  - 6\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP