Phần II. Trắc nghiệm đúng, sai
An thích ăn hai loại trái cây là cam và xoài, mỗi tuần mẹ cho An 200000 đồng để mua trái cây. Biết rằng giá cam là 15000 đồng/ 1 kg, giá xoài là 30000 đồng/1 kg. Gọi \(x,y\) lần lượt là số kilogam cam và xoài mà An có thể mua về sử dụng trong một tuần.
a) Trong tuần, số tiền An có thể mua cam là \(15000x\) đồng, số tiền An có thể mua xoài là \(30000y\) đồng với \(\left( {x,y > 0} \right)\).
b) Bất phương trình bậc nhất cho hai ẩn \(x,y\) là \(3x + 6y \ge 40\).
c) Cặp số \(\left( {5;4} \right)\) thỏa mãn bất phương trình bậc nhất cho hai ẩn \(x,y\).
d) An có thể mua \(4\)kg cam, \(5\;\)kg xoài trong tuần.
Phần II. Trắc nghiệm đúng, sai
An thích ăn hai loại trái cây là cam và xoài, mỗi tuần mẹ cho An 200000 đồng để mua trái cây. Biết rằng giá cam là 15000 đồng/ 1 kg, giá xoài là 30000 đồng/1 kg. Gọi \(x,y\) lần lượt là số kilogam cam và xoài mà An có thể mua về sử dụng trong một tuần.
a) Trong tuần, số tiền An có thể mua cam là \(15000x\) đồng, số tiền An có thể mua xoài là \(30000y\) đồng với \(\left( {x,y > 0} \right)\).
b) Bất phương trình bậc nhất cho hai ẩn \(x,y\) là \(3x + 6y \ge 40\).
c) Cặp số \(\left( {5;4} \right)\) thỏa mãn bất phương trình bậc nhất cho hai ẩn \(x,y\).
d) An có thể mua \(4\)kg cam, \(5\;\)kg xoài trong tuần.
Quảng cáo
Trả lời:
a) Sai. Trong tuần, số tiền An có thể mua cam là \(15000x\), số tiền An có thể mua xoài là \(30000y\) với \(\left( {x,y \ge 0} \right)\).
b) Sai. Ta có bất phương trình: \(15000x + 30000y \le 200000 \Leftrightarrow 3x + 6y \le 40\,\,\,\,\,\left( * \right)\).
c) Đúng. Xét \(x = 5,y = 4\) thay vào bất phương trình: \(3.5 + 6.4 \le 40\) (đúng) nên \(\left( {5\,;\,4} \right)\) là một nghiệm của \(\left( * \right)\).
d) Sai. Xét \(x = 4,y = 5\) thay vào bất phương trình: \(3.4 + 6.5 \le 40\) (sai) nên An không có thể mua \(4\)kg cam, \(5\;\)kg xoài trong tuần.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Để bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) là bậc nhất hai ẩn thì
\({\left( {m + 1} \right)^2} + {\left( {{m^2} + m} \right)^2} > 0\)\( \Leftrightarrow {\left( {m + 1} \right)^2}\left( {1 + {m^2}} \right) > 0 \Leftrightarrow m \ne - 1\).
Điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) nên tọa độ điểm \(M\left( {1;2} \right)\) thỏa mãn bất phương trình.
Từ đó ta có \(m + 1 + 2\left( {{m^2} + m} \right) - 1 > 0 \Leftrightarrow 2{m^2} + 3m > 0 \Leftrightarrow m\left( {2m + 3} \right) > 0\) \(\left( * \right)\).
\[\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\2m + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\2m + 3 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\m > - \frac{3}{2}\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\m < - \frac{3}{2}\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}m > 0\\m < - \frac{3}{2}\end{array} \right.\).
Mà \(m \ne - 1\) nên ta được \(m \in \left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {0; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.