Một đội sản xuất cần 3 giờ để làm xong sản phẩm loại \(I\) và 2 giờ để làm xong sản phẩm loại II. Biết thời gian tối đa cho việc sản xuất
hai sản phẩm trên là 18 giờ. Gọi \(x,y\) lần lượt là số sản phẩm loại \(I\), loại \(II\) mà đội làm được trong thời gian cho phép.
a) Tổng thời gian làm xong sản phẩm loại \(I\) là \(2x\), tổng thời gian làm xong sản phẩm loại II là \(3y\).
b) Bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\) là \(3x + 2y < 18\).
c) \(\left( {3\,;\,4} \right)\) là một nghiệm của bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\).
d) \(\left( {4;\,3} \right)\) là một nghiệm của bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\).
Một đội sản xuất cần 3 giờ để làm xong sản phẩm loại \(I\) và 2 giờ để làm xong sản phẩm loại II. Biết thời gian tối đa cho việc sản xuất
hai sản phẩm trên là 18 giờ. Gọi \(x,y\) lần lượt là số sản phẩm loại \(I\), loại \(II\) mà đội làm được trong thời gian cho phép.
a) Tổng thời gian làm xong sản phẩm loại \(I\) là \(2x\), tổng thời gian làm xong sản phẩm loại II là \(3y\).
b) Bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\) là \(3x + 2y < 18\).
c) \(\left( {3\,;\,4} \right)\) là một nghiệm của bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\).
d) \(\left( {4;\,3} \right)\) là một nghiệm của bất phương trình bậc nhất hai ẩn theo \(x,y\) với điều kiện \(x,y \in \mathbb{N}\).
Quảng cáo
Trả lời:
a) Sai. Tổng thời gian làm xong sản phẩm loại \(I\) là \(3x\), tổng thời gian làm xong sản phẩm loại II là \(2y\).
b) Sai. Ta có bất phương trình: \(3x + 2y \le 18\,\,\,\,\,\left( * \right)\) với điều kiện \(x,y \in \mathbb{N}\).
c) Đúng. Thay cặp số \(\left( {3\,;\,4} \right)\) vào bất phương trình \(\left( * \right):3.3 + 2.4 \le 18\) (đúng) suy ra \(\left( {3\,;\,4} \right)\) là một nghiệm của \(\left( * \right)\).
d) Đúng. Thay cặp số \(\left( {4;\,3} \right)\) vào bất phương trình \(\left( * \right):3.4 + 2.3 \le 18\) (đúng) suy ra \(\left( {4;\,3} \right)\) là một nghiệm của \(\left( * \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Gọi \(x,\,y\) lần lượt là số vở bạn Lan có thể mua ().
Theo bài ra ta có: \(3x + 4y \le 15\).
Ta lấy gốc tọa độ \(O\left( {0;\,0} \right)\) và tính \(3.0 + 4.0 - 15 \le 0\).
Do đó miền nghiệm của bất phương trình là nửa mặt phẳng bờ là đường thẳng \(d\) chứa gốc tọa độ \(O\), kể cả đường thẳng \(d\) (miền nghiệm là miền không bị gạch sọc)
![Bạn Lan có 15 nghìn đồng để đi mua vở. Vở loại \(A\) có giá \(3000\) đồng một cuốn, vở loại \(B\) có giá \(4000\) đồng một cuốn. Hỏi bạn Lan có thể mua nhiều nhất bao nhiêu quyển vở sao cho bạn có cả hai loại vở? A. \[3\]. B. \[5\]. C. \[4\]. D. \(6\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/07/blobid1-1753190619.png)
Lời giải
Bất phương trình biểu diễn số tập và bút có thể mua được phụ thuộc vào số tiền mang theo là \(8000x + 6000y \le 150000\).
Bạn Lan có thể mua được tối đa số quyển tập nếu bạn đã mua 10 cây bút là \(8000x + 6000.10 \le 150000 \Leftrightarrow x \le 11,25\).
Vì \(x\) nguyên dương nên số quyển tập tối đa bạn Lan mua được là 11 quyển.
Đáp án: 11.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.