Một cửa hàng bán hai loại đồ uống có tên là “Giọt lệ thiên thần” và “Giọt lệ ác quỷ”. Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng,
ba ly “Giọt lệ ác quỷ” có giá \(540\,000\)đồng. Hàng tháng, cửa hàng này phải chi trả \(6\,000\,000\) đồng tiền thuê nhân viên,
(8\,000\,000\) đồng tiền thuê mặt bằng, \(3\,000\,000\) đồng tiền nguyên liệu. (Ngoài ra cửa hàng không tốn thêm bất kỳ chi phí gì và thu
nhập của cửa hàng chỉ đến từ việc bán hai loại đồ uống trên). Gọi \[x\] và \(y\) lần lượt là số ly “Giọt lệ thiên thần” và “Giọt lệ ác quỷ” mà
cửa hàng bán được trong một tháng. Điều kiện của \[x\] và \(y\) để doanh thu của cửa hàng trong một tháng có lãi thoả mãn bất phương
trình \(ax + by \le 1700\) với \(a,\,b \in \mathbb{N}\). Tính giá trị biểu thức \(T = 2a + b\).
Một cửa hàng bán hai loại đồ uống có tên là “Giọt lệ thiên thần” và “Giọt lệ ác quỷ”. Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng,
ba ly “Giọt lệ ác quỷ” có giá \(540\,000\)đồng. Hàng tháng, cửa hàng này phải chi trả \(6\,000\,000\) đồng tiền thuê nhân viên,
(8\,000\,000\) đồng tiền thuê mặt bằng, \(3\,000\,000\) đồng tiền nguyên liệu. (Ngoài ra cửa hàng không tốn thêm bất kỳ chi phí gì và thu
nhập của cửa hàng chỉ đến từ việc bán hai loại đồ uống trên). Gọi \[x\] và \(y\) lần lượt là số ly “Giọt lệ thiên thần” và “Giọt lệ ác quỷ” mà
cửa hàng bán được trong một tháng. Điều kiện của \[x\] và \(y\) để doanh thu của cửa hàng trong một tháng có lãi thoả mãn bất phương
trình \(ax + by \le 1700\) với \(a,\,b \in \mathbb{N}\). Tính giá trị biểu thức \(T = 2a + b\).
Quảng cáo
Trả lời:
Bốn ly “Giọt lệ thiên thần” có giá \(600\,000\) đồng nên một ly “Giọt lệ thiên thần” có giá \(150\,000\)đồng.
Ba ly “Giọt lệ ác quỷ” có giá \(540\,000\) đồng nên một ly “Giọt lệ ác quỷ” có giá \(180\,000\) đồng.
Tổng số tiền phải chi trả của cửa hàng trong một tháng là \(17\,000\,000\) đồng.
Để cửa hàng có lãi thì thu nhập của cửa hàng phải lớn hơn \(17\,000\,000\) đồng nên ta có:
\(150\,000x + 180\,000y > 17\,000\,000\)\( \Leftrightarrow 15x + 18y > 1\,700\).
Vậy \(a = 15\,;\,\,b = 18 \Rightarrow T = 2a + b = 2.15 + 18 = 48\).
Đáp án: 48.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bất phương trình biểu diễn số tập và bút có thể mua được phụ thuộc vào số tiền mang theo là \(8000x + 6000y \le 150000\).
Bạn Lan có thể mua được tối đa số quyển tập nếu bạn đã mua 10 cây bút là \(8000x + 6000.10 \le 150000 \Leftrightarrow x \le 11,25\).
Vì \(x\) nguyên dương nên số quyển tập tối đa bạn Lan mua được là 11 quyển.
Đáp án: 11.
Lời giải
a) Đúng. Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ .\(B\). là \(y\).
b) Sai. Với \(x,y \in \mathbb{N}\), ta có bất phương trình: \(3x - y \ge 20\,\,\,\,\,\left( * \right)\).
c) Đúng. Thay cặp số \(\left( {7\,;\,1} \right)\) vào bất phương trình \(\left( * \right):3.7 - 1 \ge 20\) (đúng) suy ra \(\left( {7\,;\,1} \right)\) là một nghiệm của \(\left( * \right)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
d) Sai. Thay cặp số \(\left( {8\,;\,4} \right)\) vào bất phương trình \(\left( * \right):3.8 - 4 \ge 20\) (đúng) suy ra \(\left( {8\,;\,4} \right)\) là một nghiệm của \(\left( * \right)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 4 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.