Để giúp đỡ những người khó khăn, thu nhập thấp được về quê ăn tết đoàn tụ với gia đình, một công ty đã thuê xe dịch vụ cho những
chuyến xe nghĩa tình đưa \(180\) người và \(8\) tấn hàng về quê ăn tết. Nơi thuê xe có hai loại xe A và B, trong đó xe A có \(10\) chiếc, xe
B có \(9\) chiếc. Một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng. Biết rằng mỗi xe loại A có thể
chở tối đa \(30\) người và \(0,8\)tấn hàng, mỗi xe loại B có thể chở tối đa \(20\) người và \(1,6\) tấn hàng.
a) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê. Khi đó, số tiền cần bỏ ra để thuê xe là ( {x;y} \right) = 5x + 4y\) (triệu
đồng).
b) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê, ta có hệ bất phương trình biểu thị các điều kiện của bài toán là: \(\left\{
\begin{array}{l}30x + 20y \ge 180\\0,8x + 1,6y \ge 8\\0 \le x \le 10\\0 \le y \le 9\end{array}
c) Điểm \(M\left( {4\,;2} \right)\) thuộc miền nghiệm của hệ bất phương trình biểu thị các điều kiện của bài toán.
d) Công ty cần thuê 4 xe loại \(A\) và 3 xe loại \(B\) thì chi phí thấp nhất.
Để giúp đỡ những người khó khăn, thu nhập thấp được về quê ăn tết đoàn tụ với gia đình, một công ty đã thuê xe dịch vụ cho những
chuyến xe nghĩa tình đưa \(180\) người và \(8\) tấn hàng về quê ăn tết. Nơi thuê xe có hai loại xe A và B, trong đó xe A có \(10\) chiếc, xe
B có \(9\) chiếc. Một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng. Biết rằng mỗi xe loại A có thể
chở tối đa \(30\) người và \(0,8\)tấn hàng, mỗi xe loại B có thể chở tối đa \(20\) người và \(1,6\) tấn hàng.
a) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê. Khi đó, số tiền cần bỏ ra để thuê xe là ( {x;y} \right) = 5x + 4y\) (triệu
đồng).
b) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê, ta có hệ bất phương trình biểu thị các điều kiện của bài toán là: \(\left\{
\begin{array}{l}30x + 20y \ge 180\\0,8x + 1,6y \ge 8\\0 \le x \le 10\\0 \le y \le 9\end{array}
c) Điểm \(M\left( {4\,;2} \right)\) thuộc miền nghiệm của hệ bất phương trình biểu thị các điều kiện của bài toán.
d) Công ty cần thuê 4 xe loại \(A\) và 3 xe loại \(B\) thì chi phí thấp nhất.
Quảng cáo
Trả lời:
a) Đúng. Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê.
Vì một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng nên số tiền cần bỏ ra để thuê xe là \(F\left( {x;y} \right) = 5x + 4y\)(triệu đồng).
b) Đúng. Ta có \(x\) xe loại A chở được \(30x\) người và \(0,8x\) tấn hàng; \(y\) xe loại B chở được \(20y\)người và \(1,6y\) tấn hàng.
Suy ra \(x\)xe loại A và \(y\) xe loại B chở được \(30x + 20y\) và \(0,8x + 1,6y\) tấn hàng.
Ta có hệ bất phương trình sau: \(\left\{ \begin{array}{l}30x + 20y \ge 180\\0,8x + 1,6y \ge 8\\0 \le x \le 10\\0 \le y \le 9\end{array} \right.\left( * \right)\).
c) Sai. Thay tọa độ điểm \(M\left( {4\,;2} \right)\) vào hệ \(\left( * \right)\) không thỏa bất phương trình \(30x + 20y \ge 180\). Do đó điểm \(M\left( {4\,;2} \right)\) không thuộc miền nghiệm của hệ \(\left( * \right)\).
d) Đúng.

Miền nghiệm của hệ \(\left( * \right)\)là tứ giác ABCD (kể cả bờ) với các đỉnh lần lượt là \(A\left( {0;9} \right),B\left( {4;3} \right),C\left( {10;0} \right),D\left( {10;9} \right).\)
Ta thấy \(F\left( {x;y} \right) = 5x + 4y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D.\)
Tại \(A\left( {0;9} \right):F = 36\) (triệu đồng).
Tại \(B\left( {4;3} \right):F = 32\) (triệu đồng).
Tại \(C\left( {10;0} \right):F = 50\) (triệu đồng).
Tại \(D\left( {10;9} \right):F = 86\) (triệu đồng).
Như vậy để chi phí thấp nhất cần thuê 4 xe loại A và 3 xe loại B.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Gọi \(x,y\) lần lượt là số gói thực phẩm loại \(X\), loại \(Y\) mà bà Lan cần dùng trong một ngày. Ta có: \(0 \le x \le 12,0 \le y \le 12\).
Số đơn vị canxi được cung cấp là \(20x + 20y\). Ta có: \(20x + 20y \ge 240\) hay \(x + y \ge 12\).
Số đơn vị sắt được cung cấp là \(20x + 10y\). Ta có: \(20x + 10y \ge 160\) hay \(2x + y \ge 16\).
Số đơn vị vitamin \(B\) được cung cấp là \(10x + 20y\). Ta có: \(10x + 20y \ge 140\) hay \(x + 2y \ge 14.\)
Ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\) .

b) Đúng. Miền nghiệm của hệ bất phương trình là miền ngũ giác \(ABCDE\) với \(A(12;12)\), \(B(2;12),C(4;8),D(10;2),E(12;1)\)
c) Đúng. Số tiền bà Lan dùng để mua các gói thực phẩm \(X,Y\) trong một ngày là: \(T = 20x + 25y\) (nghìn đồng).
Tính giá trị của \(T\) tại các cặp số \((x;y)\) là toạ độ các đỉnh trên rồi so sánh các giá trị đó, ta được \(T\) đạt giá trị nhỏ nhất bằng 250 nghìn đồng tại \(x = 10;y = 2\).
Vậy để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\) nhưng với chi phí thấp nhất thì mỗi ngày bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\).
d) Sai. Điểm \(\left( {10;8} \right)\) thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\).
Lời giải
a) Đúng. Gọi \(x,y\) (đơn vị: triệu đồng) tiền bác Linh đầu tư vào khoản \(X\) và khoản Y. Khi đó ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y}\end{array}} \right.\).
b) Sai. Miền nghiệm của hệ trên là miền tam giác \(ABC\) với \(A\left( {180;60} \right)\,;\,\,B\left( {120;40} \right)\), \(C\left( {200\,;\,40} \right)\) như hình vẽ dưới:

c) Sai. Điểm \(C\left( {200\,;\,40} \right)\) thuộc miền nghiệm của hệ bất phương trình tiền bác Linh đầu tư vào kho
d) Đúng. Điểm \(A\left( {180\,;\,60} \right)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Linh đầu tư vào kho.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.