Câu hỏi:

23/07/2025 24 Lưu

Có ba nhóm máy \[A,B,C\] dùng để sản xuất ra hai loại sản phẩm \[I\] và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng

các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc

mỗi loại được cho trong bảng sau:

Có ba nhóm máy \[A,B,C\] dùng để sản xuất ra hai loại sản phẩm \[I\] và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau: (ảnh 1)
Một đơn vị sản phẩm loại \[I\]  lãi ba triệu đồng, một đơn vị sản phẩm loại \[II\] lãi năm triệu đồng. Hỏi lợi nhuận cao nhất mà đơn vị thu được là bao nhiêu? (Đơn vị là triệu đồng).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x,y\) lần lượt là số sản phẩm loại \(I\) và số sản phẩm loại \(II\) được sản xuất  (Điều kiện \(x,y \ge 0\)).

Số máy loại A cần để sản xuất không vượt quá 10 nên \(2x + 2y \le 10\) hay \[x + y \le 5\].

Số máy loại B cần để sản xuất không vượt quá 4 nên \(0x + 2y \le 4\) hay \[y \le 2\].

Số máy loại C cần để sản xuất không vượt quá 12 nên \(2x + 4y \le 12\) hay \[x + 2y \le 6\].

Vì số máy của mỗi nhóm được cho chi tiết trong bảng nên ta có hệ bất phương trình \[\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 5\\y \le 2\\x + 2y \le 6\end{array} \right.\].

Hệ bất phương trình có miền nghiệm là ngũ giác \[OBCDE\] với \[O\left( {0;0} \right),B\left( {0;2} \right),\] \[C\left( {2;2} \right),D\left( {4;1} \right)\] và \[E\left( {5;0} \right)\] (như hình vẽ bên dưới).

Có ba nhóm máy \[A,B,C\] dùng để sản xuất ra hai loại sản phẩm \[I\] và II. Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau: (ảnh 2)

Lợi nhuận thu được khi sản xuất \[x\] sản phẩm loại I và \[y\] sản phẩm loại II là \[F\left( {x;y} \right) = 3x + 5y\]

Ta thấy \[F\left( {0;0} \right) = 0\], \[F\left( {0;2} \right) = 10\], \[F\left( {2;2} \right) = 16\], \[F\left( {4;1} \right) = 17\] và \[F\left( {5;0} \right) = 15\] nên lợi nhuận thu được nhiều nhất là 17 triệu đồng khi sản xuất \[4\] sản phẩm loại I và \[1\] sản phẩm loại II.

Đáp án: 17.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là \(X\) và \(Y\). Mỗi gói thực phẩm

\(X\) chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin \(B\). Mỗi gói thực phẩm \(Y\) chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn

vị vitamin \(B\). Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin \(B\). Mỗi

ngày không được dùng quá 12 gói mỗi loại.

a) Hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu

cầu cần thiết đối với canxi, sắt và vitamin x+y122x+y16x+2y140x120y12

b) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng

để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là một ngũ giác.

c) Biết 1 gói thực phẩm loại \(X\) giá 20000 đồng, 1 gói thực phẩm loại \(Y\) giá 25000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại \(X\)

và 2 gói thực phẩm loại \(Y\) để chi phí mua là ít nhất.

d) Điểm \(\left( {10;8} \right)\) không thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan

cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\).

Lời giải

a) Đúng. Gọi \(x,y\) lần lượt là số gói thực phẩm loại \(X\), loại \(Y\) mà bà Lan cần dùng trong một ngày. Ta có: \(0 \le x \le 12,0 \le y \le 12\).

Số đơn vị canxi được cung cấp là \(20x + 20y\). Ta có: \(20x + 20y \ge 240\) hay \(x + y \ge 12\).

Số đơn vị sắt được cung cấp là \(20x + 10y\). Ta có: \(20x + 10y \ge 160\) hay \(2x + y \ge 16\).

Số đơn vị vitamin \(B\) được cung cấp là \(10x + 20y\). Ta có: \(10x + 20y \ge 140\) hay \(x + 2y \ge 14.\)

Ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\) .

Bà Lan được tư vấn bổ sung chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là \(X\) và \(Y\). Mỗi gói thực phẩm \(X\) chứa 20 đơn vị canxi, 20 đơn vị sắt và 10 đơn vị vitamin \(B\). Mỗi gói thực phẩm \(Y\) chứa 20 đơn vị canxi, 10 đơn vị sắt và 20 đơn vị vitamin \(B\). Yêu cầu hằng ngày tối thiểu trong chế độ ăn uống là 240 đơn vị canxi, 160 đơn vị sắt và 140 đơn vị vitamin \(B\). Mỗi ngày không được dùng quá 12 gói mỗi loại.  a) Hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\) là \(\left\{ {\begin{array}{*{20}{l}}{x + y \ge 12}\\{2x + y \ge 16}\\{x + 2y \ge 14}\\{0 \le x \le 12}\\{0 \le y \le 12}\end{array}} \right.\). b) Miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\)là một ngũ giác. c) Biết 1 gói thực phẩm loại \(X\) giá 20000 đồng, 1 gói thực phẩm loại \(Y\) giá 25000 đồng. Bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\) để chi phí mua là ít nhất. d) Điểm \(\left( {10;8} \right)\) không thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\). (ảnh 1)

b) Đúng. Miền nghiệm của hệ bất phương trình là miền ngũ giác \(ABCDE\) với \(A(12;12)\), \(B(2;12),C(4;8),D(10;2),E(12;1)\)

c) Đúng. Số tiền bà Lan dùng để mua các gói thực phẩm \(X,Y\) trong một ngày là: \(T = 20x + 25y\) (nghìn đồng).

Tính giá trị của \(T\) tại các cặp số \((x;y)\) là toạ độ các đỉnh trên rồi so sánh các giá trị đó, ta được \(T\) đạt giá trị nhỏ nhất bằng 250 nghìn đồng tại \(x = 10;y = 2\).

Vậy để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\) nhưng với chi phí thấp nhất thì mỗi ngày bà Lan cần dùng 10 gói thực phẩm loại \(X\) và 2 gói thực phẩm loại \(Y\).

d) Sai. Điểm \(\left( {10;8} \right)\) thuộc miền nghiệm của hệ bất phương mô tả số gói thực phẩm \(X\) và thực phẩm \(Y\) mà bà Lan cần dùng mỗi ngày trong chế độ ăn kiêng để đáp ứng đủ nhu cầu cần thiết đối với canxi, sắt và vitamin \(B\).

Lời giải

a) Đúng. Gọi \(x,y\) (đơn vị: triệu đồng) tiền bác Linh đầu tư vào khoản \(X\) và khoản Y. Khi đó ta có hệ bất phương trình: \(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y}\end{array}} \right.\).

b) Sai. Miền nghiệm của hệ trên là miền tam giác \(ABC\) với \(A\left( {180;60} \right)\,;\,\,B\left( {120;40} \right)\), \(C\left( {200\,;\,40} \right)\) như hình vẽ dưới:

Bác Linh có kế hoạch đầu tư không quá 240 triệu đồng vào hai khoản \(X\) và khoản Y. Để đạt được lợi nhuận thì khoản \(Y\) phải đầu tư ít nhất 40 triệu đồng và số tiền đầu tư cho khoản \(X\) phải ít nhất gấp ba lần số tiền cho khoản \(Y\).  a) Gọi \(x,y\) (đơn vị: triệu đồng) tiền bác Linh đầu tư vào khoản \(X\) và khoản Y, ta có hệ bất phương trình:\(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y}\end{array}} \right.\). b) Miền nghiệm của hệ bất phương trình tiền bác Linh đầu tư là một tứ giác. c) Điểm \(C\left( {200\,;\,40} \right)\) không thuộc miền nghiệm của hệ bất phương trình tiền bác Linh đầu tư. d) Điểm \(A\left( {180\,;\,60} \right)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Linh đầu tư. (ảnh 1)

c) Sai. Điểm \(C\left( {200\,;\,40} \right)\) thuộc miền nghiệm của hệ bất phương trình tiền bác Linh đầu tư vào kho

d) Đúng. Điểm \(A\left( {180\,;\,60} \right)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Linh đầu tư vào kho.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP