Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(I,\,\,J\) lần lượt là trung điểm của \(SA\) và \(SC\). Đường thẳng \(IJ\) song song với đường thẳng nào?
Quảng cáo
Trả lời:
Chọn B

Dễ dàng thấy được: \(IJ\) là đường trung bình của tam giác \(SAC\) \( \Rightarrow IJ\parallel AC\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì E và F lần lượt là trung điểm của AB và BC nên EF là đường trung bình của tam giác ABC.
Suy ra EF // AC.
b) Ta có \(\left\{ \begin{array}{l}S = \left( {SAB} \right) \cap \left( {SCD} \right)\\AB \subset \left( {SAB} \right),CD \subset \left( {SCD} \right)\\AB//CD\end{array} \right.\).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng qua S và song song với AB.
c) Ta có \(\left\{ \begin{array}{l}M = \left( {MBC} \right) \cap \left( {SAD} \right)\\BC \subset \left( {MBC} \right),AD \subset \left( {SAD} \right)\\BC//AD\end{array} \right.\).
Do đó giao tuyến của hai mặt phẳng (MBC) và (SAD) là đường thẳng qua M và song song với BC.
d) Ta có \(\left\{ \begin{array}{l}M = \left( {MEF} \right) \cap \left( {SAC} \right)\\EF \subset \left( {MEF} \right),AC \subset \left( {SAC} \right)\\EF//AC\end{array} \right.\).
Do đó giao tuyến của hai mặt phẳng (MEF) và (SAC) là đường thẳng qua M và song song với AC.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải

Ta có M Î (ABC) Ç (MNP) mà AB // NP nên (ABC) Ç (MNP) = Mx // AB // NP.
Trong (ABC), Mx cắt AC tại Q.
Vì MQ // AB nên \(\frac{{QC}}{{QA}} = \frac{{MC}}{{MB}} = 2\).
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.