Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Gọi M, N, P lần lượt là trung điểm của SA, SB, SC. Khi đó:
a) Mặt phẳng (MNP) cắt SD tại Q. Khi đó NQ = a.
b) (MNO) // (SCD).
c) (MNP) // (ABCD).
d) Diện tích của tứ giác MNPQ bằng a2.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Gọi M, N, P lần lượt là trung điểm của SA, SB, SC. Khi đó:
a) Mặt phẳng (MNP) cắt SD tại Q. Khi đó NQ = a.
b) (MNO) // (SCD).
c) (MNP) // (ABCD).
d) Diện tích của tứ giác MNPQ bằng a2.
Quảng cáo
Trả lời:


a) Trong mặt phẳng (SAC), I = MP Ç SO.
Trong mặt phẳng (SBD), NI Ç SD = Q mà NI Ì (MNP) Þ Q = SD Ç (MNP).
Xét DSAC, có MP // AC suy ra I là trung điểm SO.
Xét DSBD có IN // BO Þ NQ // BD mà N là trung điểm SB nên Q là trung điểm SD.
Do đó NQ là đường trung bình của DSBD \( \Rightarrow NQ = \frac{{BD}}{2} = \frac{{2a\sqrt 2 }}{2} = a\sqrt 2 \).
b) DSAB, có MN // AB mà AB // CD Þ MN // (SCD) (1).
DSBD có NO // SD Þ NO // (SCD) (2).
Mà MN, NO Ì (MNO) và MN Ç NO = N (3).
Từ (1), (2), (3) Þ (MNO) // (SCD).
c) MN // AB Þ MN // (ABCD)
MP // BC Þ MP // (ABCD) mà MN Ç MP = M nên (MNP) // (ABCD).
d)Xét tứ giác MNPQ có I là trung điểm của MP, NQ nên tứ giác MNPQ là hình bình hành.
Lại có MN = NP (vì cùng bằng \(\frac{{AB}}{2}\)) nên MNPQ là hình thoi.
Có \(MP = \frac{{AC}}{2} = a\sqrt 2 \). Do đó \({S_{MNPQ}} = \frac{1}{2}.MP.NQ = \frac{1}{2}.a\sqrt 2 .a\sqrt 2 = {a^2}\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Dựng CI song song với AB, I thuộc AB Þ AICD là hình bình hành Þ AI = DC.
Kẻ IH song song SA, H thuộc SB.
Xét mặt phẳng (CIH) có IC // AD và IH // SA Þ (CIH) // (SAD).
Khi đó (CIH) cắt SB tại E thì CE // (SAD) Û E ≡ H.
Ta có IE // SA (H trùng E) \( \Rightarrow \frac{{SE}}{{EB}} = \frac{{AI}}{{BI}} = \frac{2}{3}\) Þ n = 3; m = 2. Do đó 2m + 3n = 13.
Trả lời: 13.
Lời giải

a) H, I lần lượt là trung điểm của SA, SB nên HI là đường trung bình của tam giác SAB.
Suy ra HI // AB mà AB Ì (ABCD) nên HI // (ABCD) (1).
b) I, K lần lượt là trung điểm của SB, SC nên IK là đường trung bình của tam giác SBC.
Suy ra IK // BC mà BC Ì (ABCD) nên IK // (ABCD) (2).
Từ (1) và (2), suy ra (HIK) // (ABCD).
c) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{M \in AI,AI \subset (SAB)}\\{M \in DK,DK \subset (SCD)}\end{array} \Rightarrow M \in (SAB) \cap (SCD)} \right.\\ \Rightarrow SM = (SAB) \cap (SCD).\end{array}\)
\({\rm{ Khi d\'o : }}\left\{ {\begin{array}{*{20}{l}}{(SAB) \cap (SCD) = SM}\\{AB \subset (SAB),CD \subset (SCD) \Rightarrow SM//AB//CD \Rightarrow SM//HI}\\{AB//CD}\end{array}} \right..\)
Mà H là trung điểm của SA nên I là trung điểm của AM.
Xét tứ giác ABMS có I là trung điểm của AM, I là trung điểm của SB nên tứ giác ABMS là hình bình hành.
d) \(\begin{array}{l}{\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{N \in DH,DH \subset (SAD)}\\{N \in CI,CI \subset (SBC)}\end{array} \Rightarrow N \in (SAD) \cap (SBC)} \right.\\ \Rightarrow SN = (SAD) \cap (SBC).\end{array}\)
Khi đó, ta có:
\(\left\{ {\begin{array}{*{20}{l}}{(SAD) \cap (SBC) = SN}\\{AD \subset (SAD),BC \subset (SBC) \Rightarrow SN//AD//BC \Rightarrow SN//KI}\\{AD//BC}\end{array}} \right.\).
Vì SM // HI mà HI Ì (HIK) nên SM // (HIK) (3).
Vì SN // KI mà KI Ì (HIK) nên SN // (HIK) (4).
Từ (3) và (4) suy ra (SMN) // (HIK).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.