Một bể chứa ban đầu chứa 5000 lít nước, do lâu ngày sử dụng nên bể bị hỏng và làm nước chảy ra từ đáy bể trong 40 phút. Theo định luật Torricelli cho biết thể tích V của nước còn lại trong bể sau t phút tính theo công thức \(V = 5000{\left( {1 - \frac{1}{{40}}t} \right)^2},0 \le t \le 40\). Biết lưu lượng nước chảy \(Q = \mathop {\lim }\limits_{\Delta t \to 0} \frac{{\Delta V}}{{\Delta t}}\). Tính lưu lượng nước chảy sau 5 phút (đơn vị lít/phút) (làm tròn kết quả đến hàng đơn vị).
Một bể chứa ban đầu chứa 5000 lít nước, do lâu ngày sử dụng nên bể bị hỏng và làm nước chảy ra từ đáy bể trong 40 phút. Theo định luật Torricelli cho biết thể tích V của nước còn lại trong bể sau t phút tính theo công thức \(V = 5000{\left( {1 - \frac{1}{{40}}t} \right)^2},0 \le t \le 40\). Biết lưu lượng nước chảy \(Q = \mathop {\lim }\limits_{\Delta t \to 0} \frac{{\Delta V}}{{\Delta t}}\). Tính lưu lượng nước chảy sau 5 phút (đơn vị lít/phút) (làm tròn kết quả đến hàng đơn vị).
Quảng cáo
Trả lời:
Ta có \(V = 5000{\left( {1 - \frac{1}{{40}}t} \right)^2} = 5000\left( {1 - \frac{1}{{20}}t + \frac{1}{{1600}}{t^2}} \right)\).
Ta có \(\Delta V = V\left( {t + \Delta t} \right) - V\left( t \right) = 5000\left[ {\left( {1 - \frac{1}{{20}}\left( {t + \Delta t} \right)} \right) + \frac{1}{{1600}}{{\left( {t + \Delta t} \right)}^2} - \left( {1 - \frac{1}{{20}}t + \frac{1}{{1600}}{t^2}} \right)} \right]\)
\( = 5000\left[ { - \frac{1}{{20}}\Delta t + \frac{1}{{1600}}\Delta t\left( {2t + \Delta t} \right)} \right]\).
Suy ra \(\frac{{\Delta V}}{{\Delta t}} = 5000\left[ { - \frac{1}{{20}} + \frac{1}{{1600}}\left( {2t + \Delta t} \right)} \right]\).
Khi đó \(Q = \mathop {\lim }\limits_{\Delta t \to 0} \frac{{\Delta V}}{{\Delta t}} = \mathop {\lim }\limits_{\Delta t \to 0} \left[ {5000\left( { - \frac{1}{{20}} + \frac{1}{{1600}}\left( {2t + \Delta t} \right)} \right)} \right] = - 250 + \frac{{25}}{4}t\).
Khi đó lưu lượng nước chảy sau 5 phút là \( - 250 + \frac{{25}}{4}.5 \approx - 219\) lít/ phút.
Trả lời: −219.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
C
Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 2 là
\(f'\left( 2 \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^3} + 3{x^2} - 20}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} + 5x + 10} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {{x^2} + 5x + 10} \right) = 24\).
Có f(2) = 18
Phương trình tiếp tuyến có dạng: y = 24(x – 2) + 18 = 24x – 30.
Câu 2
C. f'(1) với f(x) = lnx.
Lời giải
A
\(f'\left( e \right) = \mathop {\lim }\limits_{x \to e} \frac{{\ln x - \ln e}}{{x - e}} = \mathop {\lim }\limits_{x \to e} \frac{{\ln x - 1}}{{x - e}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.