Câu hỏi:

12/07/2024 6,581

Chứng minh rằng trong một tam giác cân, độ dài đoạn thẳng nối đỉnh đối diện với đáy và một điểm bất kỳ của cạnh đáy nhỏ hơn hoặc bằng độ dài của cạnh bên.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử ΔABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB; AM ≤ AC.

- TH1 : Nếu M ≡ B hoặc M ≡ C (Kí hiệu đọc là trùng với) thì AM = AB = AC.

Giải bài 10 trang 59 SGK Toán 7 Tập 2 | Giải toán lớp 7

- TH2 : Nếu M nằm giữa B và C và M ≠ B; M ≠ C.

Kẻ AH ⊥ BC tại H

+ Nếu M ≡ H ⇒ AM ⊥ BC tại M hay AM là đường vuông góc từ A đến BC.

Mà AB, AC là các đường xiên từ A đến đường thẳng BC.

Theo định lí 1 : Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó, đường thẳng vuông góc là đường ngắn nhất.

⇒ AM < AB và AM < AC.

Giải bài 10 trang 59 SGK Toán 7 Tập 2 | Giải toán lớp 7

+ Nếu M ≠ H giả sử M nằm giữa H và C ⇒ MH < CH.

Giải bài 10 trang 59 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vì MH và CH lần lượt là hình chiếu của đường xiên MA và CA trên đường BC

Mà MH < CH ⇒ MA < CA (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).

Chứng minh tương tự nếu M nằm giữa H và B

Vậy mọi vị trí của M trên cạnh đáy BC thì AM ≤ AB = AC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình 16. Hãy chứng minh rằng:

DE < BC.

Giải bài 13 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xem đáp án » 12/07/2024 5,387

Câu 2:

Một cách chứng minh khác của định lí 2:

Cho hình 13. Dùng quan hệ giữa góc và cạnh đối diện trong một tam giác để chứng minh rằng:

Nếu BC < BD thì AC < AD

Trong tam giác ACD, cạnh nào lớn nhất, tại sao?

Giải bài 11 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xem đáp án » 12/07/2024 4,789

Câu 3:

Cho hình 14. Ta gọi độ dài đoạn thẳng AB là khoảng cách giữa hai đường thẳng song song a và b.

Giải bài 12 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Một tấm gỗ xẻ có hai cạnh song song. Chiều rộng của tấm gỗ là khoảng cách giữa hai cạnh đó.

Muốn đo chiều rộng của tấm gỗ, ta phải đặt thước như thế nào? Tại sao? Cách đặt thước như trong hình 15 có đúng không?

Xem đáp án » 12/07/2024 4,380

Câu 4:

Đố: Vẽ tam giác PQR có PQ = PR = 5cm, QR = 6 cm.

Lấy điểm M trên đường thẳng QR sao cho PM = 4,5cm. Có mấy điểm M như vậy?

Điểm M có nằm trên cạnh QR hay không? Tại sao?

Xem đáp án » 11/07/2024 3,650

Câu 5:

Cho hình 16. Hãy chứng minh rằng:

BE < BC;

Giải bài 13 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xem đáp án » 11/07/2024 1,167

Câu 6:

Một cách chứng minh khác của định lí 2:

Cho hình 13. Dùng quan hệ giữa góc và cạnh đối diện trong một tam giác để chứng minh rằng:

Nếu BC < BD thì AC < AD

Hướng dẫn:

Góc ACD là góc gì? Tại sao?

Giải bài 11 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xem đáp án » 12/07/2024 858

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store