Câu hỏi:

12/07/2024 5,057

Một cách chứng minh khác của định lí 2:

Cho hình 13. Dùng quan hệ giữa góc và cạnh đối diện trong một tam giác để chứng minh rằng:

Nếu BC < BD thì AC < AD

Trong tam giác ACD, cạnh nào lớn nhất, tại sao?

Giải bài 11 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trong tam giác ACD có góc ACD là góc tù .

Mà AD là cạnh đối diện với góc ACD.

⇒ AD là cạnh lớn nhất trong tam giác ACD (cạnh đối diện với góc tù là cạnh lớn nhất trong tam giác).

nên AD > AC hay AC < AD

Vậy Nếu : BC < BD thì AC < AD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử ΔABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB; AM ≤ AC.

- TH1 : Nếu M ≡ B hoặc M ≡ C (Kí hiệu đọc là trùng với) thì AM = AB = AC.

Giải bài 10 trang 59 SGK Toán 7 Tập 2 | Giải toán lớp 7

- TH2 : Nếu M nằm giữa B và C và M ≠ B; M ≠ C.

Kẻ AH ⊥ BC tại H

+ Nếu M ≡ H ⇒ AM ⊥ BC tại M hay AM là đường vuông góc từ A đến BC.

Mà AB, AC là các đường xiên từ A đến đường thẳng BC.

Theo định lí 1 : Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó, đường thẳng vuông góc là đường ngắn nhất.

⇒ AM < AB và AM < AC.

Giải bài 10 trang 59 SGK Toán 7 Tập 2 | Giải toán lớp 7

+ Nếu M ≠ H giả sử M nằm giữa H và C ⇒ MH < CH.

Giải bài 10 trang 59 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vì MH và CH lần lượt là hình chiếu của đường xiên MA và CA trên đường BC

Mà MH < CH ⇒ MA < CA (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).

Chứng minh tương tự nếu M nằm giữa H và B

Vậy mọi vị trí của M trên cạnh đáy BC thì AM ≤ AB = AC.

Lời giải

Trong hình vẽ D nằm giữa A và B ⇒ AD < AB

Ta có: ED, EB là hai đường xiên vẽ từ E đến đường AB

EA ⏊ AB tại A nên A là hình chiếu của E trên AB.

⇒ AD, AB lần lượt là hình chiếu của ED, EB trên AB

Trong hình vẽ D nằm giữa A và B ⇒ AD < AB nên ED < EB hay DE < BE (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).

Kết hợp với kết quả câu a suy ra DE < BE < BC ⇒ DE < BC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay